TY - JOUR
T1 - Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes
AU - Cuan, Jing
AU - Zhou, You
AU - Zhou, Tengfei
AU - Ling, Shigang
AU - Rui, Kun
AU - Guo, Zaiping
AU - Liu, Huakun
AU - Yu, Xuebin
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/1/4
Y1 - 2019/1/4
N2 - Borohydride solid-state electrolytes with room-temperature ionic conductivity up to ≈70 mS cm−1 have achieved impressive progress and quickly taken their place among the superionic conductive solid-state electrolytes. Here, the focus is on state-of-the-art developments in borohydride solid-state electrolytes, including their competitive ionic-conductive performance, current limitations for practical applications in solid-state batteries, and the strategies to address their problems. To open, fast Li/Na/Mg ionic conductivity in electrolytes with BH4 − groups, approaches to engineering borohydrides with enhanced ionic conductivity, and later on the superionic conductivity of polyhedral borohydrides, their correlated conductive kinetics/thermodynamics, and the theoretically predicted high conductive derivatives are discussed. Furthermore, the validity of borohydride pairing with coated oxides, sulfur, organic electrodes, MgH2, TiS2, Li4Ti5O12, electrode materials, etc., is surveyed in solid-state batteries. From the viewpoint of compatible cathodes, the stable electrochemical windows of borohydride solid-state electrolytes, the electrode/electrolyte interface behavior and battery device design, and the performance optimization of borohydride-based solid-state batteries are also discussed in detail. A comprehensive coverage of emerging trends in borohydride solid-state electrolytes is provided and future maps to promote better performance of borohydride SSEs are sketched out, which will pave the way for their further development in the field of energy storage.
AB - Borohydride solid-state electrolytes with room-temperature ionic conductivity up to ≈70 mS cm−1 have achieved impressive progress and quickly taken their place among the superionic conductive solid-state electrolytes. Here, the focus is on state-of-the-art developments in borohydride solid-state electrolytes, including their competitive ionic-conductive performance, current limitations for practical applications in solid-state batteries, and the strategies to address their problems. To open, fast Li/Na/Mg ionic conductivity in electrolytes with BH4 − groups, approaches to engineering borohydrides with enhanced ionic conductivity, and later on the superionic conductivity of polyhedral borohydrides, their correlated conductive kinetics/thermodynamics, and the theoretically predicted high conductive derivatives are discussed. Furthermore, the validity of borohydride pairing with coated oxides, sulfur, organic electrodes, MgH2, TiS2, Li4Ti5O12, electrode materials, etc., is surveyed in solid-state batteries. From the viewpoint of compatible cathodes, the stable electrochemical windows of borohydride solid-state electrolytes, the electrode/electrolyte interface behavior and battery device design, and the performance optimization of borohydride-based solid-state batteries are also discussed in detail. A comprehensive coverage of emerging trends in borohydride solid-state electrolytes is provided and future maps to promote better performance of borohydride SSEs are sketched out, which will pave the way for their further development in the field of energy storage.
KW - borohydrides
KW - fast ionic conductors
KW - solid-state batteries
KW - solid-state electrolytes
UR - http://www.scopus.com/inward/record.url?scp=85055928880&partnerID=8YFLogxK
U2 - 10.1002/adma.201803533
DO - 10.1002/adma.201803533
M3 - 文献综述
C2 - 30368930
AN - SCOPUS:85055928880
SN - 0935-9648
VL - 31
JO - Advanced Materials
JF - Advanced Materials
IS - 1
M1 - 1803533
ER -