TY - JOUR
T1 - Breeding of monofluoroacetate-resistant strains of Actinobacillus succinogenes and the mechanism based on metabolic flux analysis
AU - Liu, Yupeng
AU - Zheng, Pu
AU - Ni, Ye
AU - Dong, Jinjun
AU - Wei, Ping
AU - Sun, Zhihao
PY - 2008
Y1 - 2008
N2 - Succinic acid has received a great deal of attention as an important green chemical stock for the manufacture of synthetic resins, biodegradable polymers and chemical intermediates. In this paper, the breeding mechanism of Actinobacillus succinogenes based on metabolic flux analysis was demonstrated to improve the yield of succinic acid by fermentation. After the NTG treatment, mutants from A. succinogenes CGMCC 1593 which were able to grow in medium containing concentrations of about 50~100 mmol/L of sodium monofluoroacetate were obtained. Among them, a mutant SF-9 was selected for producing more succinic acid and less acetic acid. When fermentations were conducted in a 5 L bioreactors, the final succinic acid concentration of SF-9 (34.8 g/L) increased 23.4%, and the mass ratio of succinic acid/acetic acid increased from 3.3 to 9 compared with those of the parent strain. Based on the metabolic flux analysis of A. succinogenes, PEP was found to be a key node which has an important effect on the production of succinic acid, and the flux ratio of by-productions (acetic, formic, lactic acid) was influenced by PYR node. Compared with the parent strain, the flux to succinic acid of mutant (A. succinogenes SF-9) was significantly increased, while the flux to by-productions had an obvious decline. Therefore, PEP and PYR are not rigid nodes in the metabolic regulation of A. succinogenes.
AB - Succinic acid has received a great deal of attention as an important green chemical stock for the manufacture of synthetic resins, biodegradable polymers and chemical intermediates. In this paper, the breeding mechanism of Actinobacillus succinogenes based on metabolic flux analysis was demonstrated to improve the yield of succinic acid by fermentation. After the NTG treatment, mutants from A. succinogenes CGMCC 1593 which were able to grow in medium containing concentrations of about 50~100 mmol/L of sodium monofluoroacetate were obtained. Among them, a mutant SF-9 was selected for producing more succinic acid and less acetic acid. When fermentations were conducted in a 5 L bioreactors, the final succinic acid concentration of SF-9 (34.8 g/L) increased 23.4%, and the mass ratio of succinic acid/acetic acid increased from 3.3 to 9 compared with those of the parent strain. Based on the metabolic flux analysis of A. succinogenes, PEP was found to be a key node which has an important effect on the production of succinic acid, and the flux ratio of by-productions (acetic, formic, lactic acid) was influenced by PYR node. Compared with the parent strain, the flux to succinic acid of mutant (A. succinogenes SF-9) was significantly increased, while the flux to by-productions had an obvious decline. Therefore, PEP and PYR are not rigid nodes in the metabolic regulation of A. succinogenes.
KW - Breed
KW - Metabolic flux analysis
KW - Monofluoroacetate
KW - Succinic acid
UR - http://www.scopus.com/inward/record.url?scp=61849098000&partnerID=8YFLogxK
M3 - 文章
C2 - 18589823
AN - SCOPUS:61849098000
SN - 1000-3061
VL - 24
SP - 460
EP - 467
JO - Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology
JF - Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology
IS - 3
ER -