TY - JOUR
T1 - Building Energy Efficiency Enhancement through Thermochromic Powder-Based Temperature-Adaptive Radiative Cooling Roofs
AU - Song, Ge
AU - Zhang, Kai
AU - Xiao, Fei
AU - Zhang, Zihao
AU - Jiao, Siying
AU - Gong, Yanfeng
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/6
Y1 - 2024/6
N2 - This paper proposes a temperature-adaptive radiative cooling (TARC) coating with simple preparation, cost effectiveness, and large-scale application based on a thermochromic powder. To determine the energy efficiency of the proposed TARC coating, the heat transfer on the surface of the TARC coating was analyzed. Then, a typical two-story residential building with a roof area of 258.43 m2 was modeled using EnergyPlus. Finally, the energy-saving potential and carbon emission reduction resulting from the application of the proposed TARC roof in buildings under different climates in China were discussed. The results showed that the average solar reflectivity under visible light wavelengths (0.38–0.78 μm) decreases from 0.71 to 0.37 when the TARC coating changes from cooling mode to heating mode. Furthermore, energy consumption can be reduced by approximately 17.8–43.0 MJ/m2 and 2.0–32.6 MJ/m2 for buildings with TARC roofs compared to those with asphalt shingle roofs and passive daytime radiative cooling (PDRC) roofs, respectively. This also leads to reductions in carbon emissions of 9.4–38.0 kgCO2/m2 and 1.0–28.9 kgCO2/m2 for the buildings located in the selected cities. To enhance building energy efficiency, TARC roofs and PDRC roofs are more suitable for use on buildings located in zones with high heating demands and high cooling demands, respectively.
AB - This paper proposes a temperature-adaptive radiative cooling (TARC) coating with simple preparation, cost effectiveness, and large-scale application based on a thermochromic powder. To determine the energy efficiency of the proposed TARC coating, the heat transfer on the surface of the TARC coating was analyzed. Then, a typical two-story residential building with a roof area of 258.43 m2 was modeled using EnergyPlus. Finally, the energy-saving potential and carbon emission reduction resulting from the application of the proposed TARC roof in buildings under different climates in China were discussed. The results showed that the average solar reflectivity under visible light wavelengths (0.38–0.78 μm) decreases from 0.71 to 0.37 when the TARC coating changes from cooling mode to heating mode. Furthermore, energy consumption can be reduced by approximately 17.8–43.0 MJ/m2 and 2.0–32.6 MJ/m2 for buildings with TARC roofs compared to those with asphalt shingle roofs and passive daytime radiative cooling (PDRC) roofs, respectively. This also leads to reductions in carbon emissions of 9.4–38.0 kgCO2/m2 and 1.0–28.9 kgCO2/m2 for the buildings located in the selected cities. To enhance building energy efficiency, TARC roofs and PDRC roofs are more suitable for use on buildings located in zones with high heating demands and high cooling demands, respectively.
KW - building energy efficiency
KW - radiative cooling
KW - temperature-adaptive roof
UR - http://www.scopus.com/inward/record.url?scp=85197251888&partnerID=8YFLogxK
U2 - 10.3390/buildings14061745
DO - 10.3390/buildings14061745
M3 - 文章
AN - SCOPUS:85197251888
SN - 2075-5309
VL - 14
JO - Buildings
JF - Buildings
IS - 6
M1 - 1745
ER -