TY - JOUR
T1 - Citrulline-induced mesoporous CoS/CoO heterojunction nanorods triggering high-efficiency oxygen electrocatalysis in solid-state Zn-air batteries
AU - Wang, Yue
AU - Wu, Xiaodong
AU - Jiang, Xian
AU - Wu, Xiangrui
AU - Tang, Yawen
AU - Sun, Dongmei
AU - Fu, Gengtao
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/4/15
Y1 - 2022/4/15
N2 - Interface engineering is recognized as one of the effective strategies to optimize the electrocatalytic behavior of catalysts via triggering surface reconstruction and charge redistribution. However, the deliberate control over rich-phase boundaries in a simple and effective manner is still challenging. Herein, an effective bifunctional oxygen electrocatalyst of mesoporous CoS/CoO heterojunction nanorods (CoS/CoO PNRs) is constructed through two-step topological transformations of Co(CO3)0.5OH·0.11H2O nanorods induced by unique citrulline molecule. The designed CoS/CoO PNRs present multiple advantages of mesoporous rod-like architecture, abundant heterointerfaces, increased oxygen vacancies, as well as dual-phase synergy, which trigger outstanding electrocatalytic performance towards oxygen evolution reaction (OER) with low overpotential (265 mV at 10 mA cm−2), low activation energy (Ea = 36.14 kJ mol−1) and robust long-term stability. The CoS/CoO PNRs is also demonstrated to be highly active for the oxygen reduction reaction (ORR) with a positive half-wave potential (0.84 V), making the CoS/CoO PNRs a potential bifunctional oxygen catalyst. As an air-cathode, the CoS/CoO PNRs can enable the solid-state Zn-air battery to achieve a large power density, a fast dynamic response, and long cycle life, outperforming that assembled with commercial Pt/C + RuO2. Theoretical calculations finally unveil that the interfacial electron transfer from CoS to CoO modulates the electronic structure of CoS/CoO, and subsequently adjusts the binding strength of the intermediates in the OER and ORR. This work opens up a new design strategy for the synthesis of high-efficiency oxygen electrocatalysts to be applied in energy-related electrochemical devices.
AB - Interface engineering is recognized as one of the effective strategies to optimize the electrocatalytic behavior of catalysts via triggering surface reconstruction and charge redistribution. However, the deliberate control over rich-phase boundaries in a simple and effective manner is still challenging. Herein, an effective bifunctional oxygen electrocatalyst of mesoporous CoS/CoO heterojunction nanorods (CoS/CoO PNRs) is constructed through two-step topological transformations of Co(CO3)0.5OH·0.11H2O nanorods induced by unique citrulline molecule. The designed CoS/CoO PNRs present multiple advantages of mesoporous rod-like architecture, abundant heterointerfaces, increased oxygen vacancies, as well as dual-phase synergy, which trigger outstanding electrocatalytic performance towards oxygen evolution reaction (OER) with low overpotential (265 mV at 10 mA cm−2), low activation energy (Ea = 36.14 kJ mol−1) and robust long-term stability. The CoS/CoO PNRs is also demonstrated to be highly active for the oxygen reduction reaction (ORR) with a positive half-wave potential (0.84 V), making the CoS/CoO PNRs a potential bifunctional oxygen catalyst. As an air-cathode, the CoS/CoO PNRs can enable the solid-state Zn-air battery to achieve a large power density, a fast dynamic response, and long cycle life, outperforming that assembled with commercial Pt/C + RuO2. Theoretical calculations finally unveil that the interfacial electron transfer from CoS to CoO modulates the electronic structure of CoS/CoO, and subsequently adjusts the binding strength of the intermediates in the OER and ORR. This work opens up a new design strategy for the synthesis of high-efficiency oxygen electrocatalysts to be applied in energy-related electrochemical devices.
KW - Bifunctional electrocatalyst
KW - CoS/CoO
KW - Heterojunction
KW - Mesoporous nanorods
KW - Oxygen vacancies
KW - Zn-air batteries
UR - http://www.scopus.com/inward/record.url?scp=85123115202&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2022.134744
DO - 10.1016/j.cej.2022.134744
M3 - 文章
AN - SCOPUS:85123115202
SN - 1385-8947
VL - 434
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 134744
ER -