Co-delivery of luteolin and TGF-β1 plasmids with ROS-responsive virus-inspired nanoparticles for microenvironment regulation and chemo-gene therapy of intervertebral disc degeneration

Yifan Ding, Huan Wang, Yunyun Wang, Long Li, Jiahui Ding, Caiyan Yuan, Tao Xu, Haoran Xu, Hui Xie, Ning Zhu, Xin Hu, Huang Fang, Songwei Tan

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

Intervertebral disc degeneration (IDD) is closely related to inflammation and imbalance of synthesis/catabolism of extracellular matrix (ECM) in intervertebral disc (IVD). Considering this, luteolin (LUT), a kind of natural flavonoid with good anti-inflammatory effect and TGF-β1 (a gene that promotes the regeneration of ECM) plasmid was co-loaded and co-delivered to nucleus pulposus cells (NPCs). Reactive oxygen species (ROS) responsive cationic copolymer, poly(β-amino ester)-poly(ε-caprolactone) (PBC), with high plasmid DNA (pDNA) compression affinity was synthesized. It can self-assemble into nano-sized polyplexes (pDNA@PBC) with virus-inspired structure and function through which it can transfect pDNA into NPCs with very high efficiency and negligible cytotoxicity. LUT was encapsulated in the hydrophobic core of pDNA@PBC. The co-delivery system, LUT-pTGF-β1@PBC, could enhance the cellular uptake of NPCs and manifest excellent sustained drug release in IVD. Real time quantitative polymerase chain reaction (RT-qPCR) and Western blot experiments reveal that the co-delivery system could inhibit inflammation in NPCs and restore the balance of anabolism and catabolism in vitro by activating TGF/SMAD3 and inhibiting NF-kB/p65. Moreover, LUT-pTGF-β1@PBC retards IDD in vivo as detected by radiological and histological methods with good biosafety in rats. LUT-pTGF-β1@PBC may be a promising option for the treatment of IDD. [Figure not available: see fulltext.]

源语言英语
页(从-至)8214-8227
页数14
期刊Nano Research
15
9
DOI
出版状态已出版 - 9月 2022

指纹

探究 'Co-delivery of luteolin and TGF-β1 plasmids with ROS-responsive virus-inspired nanoparticles for microenvironment regulation and chemo-gene therapy of intervertebral disc degeneration' 的科研主题。它们共同构成独一无二的指纹。

引用此