TY - JOUR
T1 - Combination of coagulation and ozone catalytic oxidation for pretreating coking wastewater
AU - Chen, Lei
AU - Xu, Yanhua
AU - Sun, Yongjun
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/5/2
Y1 - 2019/5/2
N2 - In this study, coagulation, ozone (O3) catalytic oxidation, and their combined process were used to pretreat actual coking wastewater. The effects on the removal of chemical oxygen demand (COD) and phenol in coking wastewater were investigated. Results showed that the optimum reaction conditions were an O3 mass flow rate of 4.1 mg min−1, a reaction temperature of 35 °C, a catalyst dosage ratio of 5:1, and a O3 dosage of 500 mg·L−1. The phenol removal ratio was 36.8% for the coagulation and sedimentation of coking wastewater under optimal conditions of 25 °C of reaction temperature, 7.5 reaction pH, 150 reaction gradient (G) value, and 500 mg·L−1 coagulant dosage. The removal ratios of COD and phenol reached 24.06% and 2.18%, respectively. After the O3-catalyzed oxidation treatment, the phenols, polycyclic aromatic hydrocarbons, and heterocyclic compounds were degraded to varying degrees. Coagulation and O3 catalytic oxidation contributed to the removal of phenol and COD. The optimum reaction conditions for the combined process were as follows: O3 dosage of 500 mg·L−1, O3 mass flow of 4.1 mg·min−1, catalyst dosage ratio of 5:1, and reaction temperature of 35 °C. The removal ratios of phenol and COD reached 47.3% and 30.7%, respectively.
AB - In this study, coagulation, ozone (O3) catalytic oxidation, and their combined process were used to pretreat actual coking wastewater. The effects on the removal of chemical oxygen demand (COD) and phenol in coking wastewater were investigated. Results showed that the optimum reaction conditions were an O3 mass flow rate of 4.1 mg min−1, a reaction temperature of 35 °C, a catalyst dosage ratio of 5:1, and a O3 dosage of 500 mg·L−1. The phenol removal ratio was 36.8% for the coagulation and sedimentation of coking wastewater under optimal conditions of 25 °C of reaction temperature, 7.5 reaction pH, 150 reaction gradient (G) value, and 500 mg·L−1 coagulant dosage. The removal ratios of COD and phenol reached 24.06% and 2.18%, respectively. After the O3-catalyzed oxidation treatment, the phenols, polycyclic aromatic hydrocarbons, and heterocyclic compounds were degraded to varying degrees. Coagulation and O3 catalytic oxidation contributed to the removal of phenol and COD. The optimum reaction conditions for the combined process were as follows: O3 dosage of 500 mg·L−1, O3 mass flow of 4.1 mg·min−1, catalyst dosage ratio of 5:1, and reaction temperature of 35 °C. The removal ratios of phenol and COD reached 47.3% and 30.7%, respectively.
KW - Coagulation
KW - Coking wastewater
KW - Combined process
KW - Ozone catalysis
UR - http://www.scopus.com/inward/record.url?scp=85066825989&partnerID=8YFLogxK
U2 - 10.3390/ijerph16101705
DO - 10.3390/ijerph16101705
M3 - 文章
C2 - 31096662
AN - SCOPUS:85066825989
SN - 1661-7827
VL - 16
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 10
M1 - 1705
ER -