TY - JOUR
T1 - Comparative experimental study on inhibition of methane explosion by ultra-fine water mist containing different additives
AU - Zhang, Zeyu
AU - Yang, Ke
AU - Du, Xiaoyang
AU - Ji, Dongyu
AU - Ji, Hong
AU - Jiang, Juncheng
N1 - Publisher Copyright:
© 2025 Elsevier Ltd
PY - 2025/8
Y1 - 2025/8
N2 - This study utilized a 2.5L visual pipeline experiment platform to investigate the inhibitory effect of ultra-fine water mist containing different additives on methane explosion. It provides a more comprehensive experimental foundation for the subsequent research on methane explosion suppression. The experiment analyzed the particle size parameters of ultra-fine water mist and the effect of different additives on the inhibition of pipeline methane explosion. The results showed that the explosion overpressure of ultra-fine water mist containing KBr, FeCl2, and PPFBS was significantly lower than that of pure methane and pure water ultra-fine water mist with the same amount of spray. The best inhibition effect was observed with 5% KBr, 0.82% FeCl2, and 0.07% PPFBS. Compared to 5 mL pure water mist, the explosion overpressure decreased by 19.49%, 16.87%, and 46.3%, and the flame propagation speed decreased by 18.7%, 15.55%, and 41.65%, respectively. It is proved that the listed additives have different degrees of inhibiting effects on methane explosion. The composite additive ultra-fine water mist had a greater effect on temperature and reacted with a large number of free radicals such as H and O, which hindered the chain reaction in the process of methane combustion most obviously. The four additives have the best explosion suppression effect: compound additive, PPFBS, KBr, and FeCL2. The main mechanism of the effect of different inorganic salt additives is that the ultra-fine water mist cools the reaction zone's temperature, and affects the gas's volume ratio after dilution and vaporization, and some evaporated crystals also play the role of attenuating heat radiation.
AB - This study utilized a 2.5L visual pipeline experiment platform to investigate the inhibitory effect of ultra-fine water mist containing different additives on methane explosion. It provides a more comprehensive experimental foundation for the subsequent research on methane explosion suppression. The experiment analyzed the particle size parameters of ultra-fine water mist and the effect of different additives on the inhibition of pipeline methane explosion. The results showed that the explosion overpressure of ultra-fine water mist containing KBr, FeCl2, and PPFBS was significantly lower than that of pure methane and pure water ultra-fine water mist with the same amount of spray. The best inhibition effect was observed with 5% KBr, 0.82% FeCl2, and 0.07% PPFBS. Compared to 5 mL pure water mist, the explosion overpressure decreased by 19.49%, 16.87%, and 46.3%, and the flame propagation speed decreased by 18.7%, 15.55%, and 41.65%, respectively. It is proved that the listed additives have different degrees of inhibiting effects on methane explosion. The composite additive ultra-fine water mist had a greater effect on temperature and reacted with a large number of free radicals such as H and O, which hindered the chain reaction in the process of methane combustion most obviously. The four additives have the best explosion suppression effect: compound additive, PPFBS, KBr, and FeCL2. The main mechanism of the effect of different inorganic salt additives is that the ultra-fine water mist cools the reaction zone's temperature, and affects the gas's volume ratio after dilution and vaporization, and some evaporated crystals also play the role of attenuating heat radiation.
KW - Attenuating radiation
KW - Explosion suppression
KW - Inorganic salt additives
KW - Preventing disasters and reducing damages
KW - Ultrafine water mist
UR - http://www.scopus.com/inward/record.url?scp=86000140059&partnerID=8YFLogxK
U2 - 10.1016/j.jlp.2025.105607
DO - 10.1016/j.jlp.2025.105607
M3 - 文章
AN - SCOPUS:86000140059
SN - 0950-4230
VL - 96
JO - Journal of Loss Prevention in the Process Industries
JF - Journal of Loss Prevention in the Process Industries
M1 - 105607
ER -