Comparing the uniformity of light glass fiber felt based on process improvement, microstructural forming mechanism and physical properties

Yong Yang, Zhou Chen, Tengzhou Xu, Cao Wu, Desire E. Awuye, Zhaofeng Chen

科研成果: 期刊稿件文章同行评审

12 引用 (Scopus)

摘要

Light glass fiber felt (density 10 kg/m3), a porous composite consisting of 83% glass fibers (the average diameter 1.5 µm) and 17% phenolic resin, is usually used to increase sound insulation in the aerospace industry. The purpose of this research is further to improve the uniformity of light glass fiber felts by process optimization, analysis of microstructural forming mechanisms and physical properties. Light glass fiber felt is produced by the flame blowing process. The results show that process optimization can effectively improve the uniformity of light glass fiber felt. Light glass fiber felt exhibits a micro-layer structure seen as consisting of a number of “three-layer” structures, that is dense (more fibers)-loose (less fibers)-dense structure. In addition, process optimization can improve the stability of permeation rate and enhance sound insulation performance, which makes light glass fiber felt an excellent sound insulator.

源语言英语
页(从-至)3447-3456
页数10
期刊Textile Research Journal
89
17
DOI
出版状态已出版 - 1 9月 2019

指纹

探究 'Comparing the uniformity of light glass fiber felt based on process improvement, microstructural forming mechanism and physical properties' 的科研主题。它们共同构成独一无二的指纹。

引用此