摘要
Here, we report on a green and effective method for the continuous and complete conversion of high concentrations of p-nitrophenol (PNP) using a flow-through membrane reactor and less NaBH4. The catalytic membrane was successfully fabricated by loading Pd nanoparticles onto the surface of a branched TiO2 nanorod-functionalized ceramic membrane. The modification with branched TiO2 nanorods can significantly improve the loading amount of Pd nanoparticles onto ceramic membranes, resulting in enhanced catalytic performance. With 6 mg of Pd, 93 L m−2 hr−1 of flux density and 8.04 cm2 of membrane surface area in the flow-through membrane reactor, PNP at a concentration of 4,000 ppm can be converted to high-value p-aminophenol using less NaBH4 (using a molar ratio of NaBH4:PNP of 9.6) within 24 s at 30°C. More importantly, the conversion can be continuously and stably performed for 240 min.
源语言 | 英语 |
---|---|
文章编号 | e16692 |
期刊 | AIChE Journal |
卷 | 65 |
期 | 9 |
DOI | |
出版状态 | 已出版 - 9月 2019 |