Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial

Xin Ren, Jianhu Shen, Phuong Tran, Tuan D. Ngo, Yi Min Xie

科研成果: 期刊稿件文章同行评审

163 引用 (Scopus)

摘要

Elastic instability has been increasingly used to design buckling-induced auxetic metamaterials. However, only limited patterns of existing three dimensional (3D) buckling-induced auxetic metamaterials exhibit a reliable 3D auxetic behaviour, i.e., the material will contract along two normal lateral directions under compression along the third direction. In this paper, we study a simple geometrical shape for achieving 3D auxetic behaviour. The unit cell of the proposed 3D design is composed of a solid sphere and three cuboids. Two representative models, one with slender connecting bars and the other with thick connecting bars, are investigated both numerically and experimentally. The results indicate that the designed material with thick connecting bars did not exhibit auxetic behaviour while the one with slender connecting bars did. However, the anticipated 3D auxetic behaviour degraded to a two dimensional (2D) auxetic behaviour, i.e., the material would contract only in one lateral direction and maintain nearly the same dimension in the other lateral direction. This finding was further confirmed by experiments. This research has demonstrated challenges in designing and manufacturing of buckling-induced auxetic metamaterials with 3D auxetic behaviour and highlighted the importance of optimising and fine-tuning the auxetic unit cell using the pattern scale factor.

源语言英语
页(从-至)336-342
页数7
期刊Materials and Design
139
DOI
出版状态已出版 - 5 2月 2018
已对外发布

指纹

探究 'Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial' 的科研主题。它们共同构成独一无二的指纹。

引用此