摘要
Bacterial infection is one of the greatest threats to public health. In vivo real-time monitoring and effective treatment of infected sites through non-invasive techniques, remain a challenge. Herein, we designed a PtII metallacycle-based supramolecular photosensitizer through the host-guest interaction between a pillar[5]arene-modified metallacycle and 1-butyl-4-[4-(diphenylamino)styryl]pyridinium. Leveraging the aggregation-induced emission supramolecular photosensitizer, we improved fluorescence performance and antimicrobial photodynamic inactivation. In vivo studies revealed that it displayed precise fluorescence tracking of S. aureus-infected sites, and in situ performed image-guided efficient PDI of S. aureus without noticeable side effects. These results demonstrated that metallacycle combined with host-guest chemistry could provide a paradigm for the development of powerful photosensitizers for biomedicine.
源语言 | 英语 |
---|---|
文章编号 | e202110048 |
期刊 | Angewandte Chemie - International Edition |
卷 | 61 |
期 | 5 |
DOI | |
出版状态 | 已出版 - 26 1月 2022 |