Design Strategies for Anti-Freeze Electrolytes in Aqueous Energy Storage Devices at Low Temperatures

Chaolin You, Weijia Fan, Xiaosong Xiong, Haoyuan Yang, Lijun Fu, Tao Wang, Faxing Wang, Zhi Zhu, Jiarui He, Yuping Wu

科研成果: 期刊稿件文献综述同行评审

20 引用 (Scopus)

摘要

With the continuous development of electrochemical energy storage technology, especially in the current pursuit of environmental sustainability and safety, aqueous energy storage devices, due to their high safety, environmental friendliness, and cost-effectiveness, are becoming an important direction of development in the field of energy storage. Diverse application scenarios require that energy storage systems be capable of continuous power supply under low temperature conditions. However, conventional aqueous electrolytes freeze at extremely low temperatures, causing limited ion transport and slow reaction kinetics, degrading the performance of the energy storage system. The design of low-temperature anti-freeze aqueous electrolytes has become an effective way to address this issue. In this review, the deep connection between hydrogen bonds (HBs) interactions in aqueous electrolytes and the liquid-to-solid conversion process, and the fundamental principles of the anti-freeze mechanism is first explored. Subsequently, a systematic categorization and discussion of the design strategies for low-temperature anti-freeze aqueous electrolytes are conducted. Finally, potential directions are proposed. This review aims to provide comprehensive scientific guidance and technical reference for the development of anti-freeze aqueous electrolytes with excellent low-temperature performance, thereby promoting the application and innovation of aqueous energy storage devices in low-temperature environments.

源语言英语
文章编号2403616
期刊Advanced Functional Materials
34
40
DOI
出版状态已出版 - 1 10月 2024

指纹

探究 'Design Strategies for Anti-Freeze Electrolytes in Aqueous Energy Storage Devices at Low Temperatures' 的科研主题。它们共同构成独一无二的指纹。

引用此