Development of self-floating fibre reinforced polymer composite structures for photovoltaic energy harvesting

Juan Han, Chuqi Wan, Hai Fang, Yu Bai

科研成果: 期刊稿件文章同行评审

20 引用 (Scopus)

摘要

This paper presents an innovative self-floating fibre reinforced polymer (FRP) composite structure for photovoltaic energy harvesting through both experimental and numerical studies. The main structural components include the primary beams using FRP composite tube system and secondary beam using galvanized steel rectangular hollow sections to form the floating platform with the railless supporting frame on top. The mechanical performance of glass fibre fabrics with different fibre densities and orientations for the primary beams was investigated through experiments. The 0/90° glass fibre fabric in 170 g/m2 was used due to better structural performance and relatively low cost. Modelling approach considering two-way fluid–structure coupling was further developed to study the hydrodynamic characteristics of the self-floating FRP composite structure caused by wind, waves and flows. The functionality and structural safety can therefore be evaluated for the proposed FRP structure under certain aquatic environments, providing a solution to construct floating photovoltaic power stations with the unique advantage in corrosion resistance of the FRP composites.

源语言英语
文章编号112788
期刊Composite Structures
253
DOI
出版状态已出版 - 1 12月 2020

指纹

探究 'Development of self-floating fibre reinforced polymer composite structures for photovoltaic energy harvesting' 的科研主题。它们共同构成独一无二的指纹。

引用此