Distinctive pathways of single-atom and nanoparticle sites over Co-based catalysts for furfuryl alcohol hydrogenation

Fan Xue, Shangpu Zhuang, Jingyue Bi, Zhaoyang Fei, Xu Qiao

科研成果: 期刊稿件文章同行评审

摘要

The targeted transformation of biomass resources into premium chemicals and biofuels stands out as a highly promising approach to mitigate greenhouse gas emissions and curb environmental pollution caused by excessive use of fossil fuels. The catalysts with diverse active sites are crucial to determine the products distribution of furan-containing bio-based feedstocks hydrogenation. Herein, Co1/NC and CoNPs/NC catalysts have been successfully prepared and demonstrated distinct reaction pathways in the selective hydrogenation of furfuryl alcohol (FOL). Notably, the Co1/NC catalyst showed 11.8 % FOL conversion within 1 h and both furan ring (C = C) and the C–OH could be hydrogenated over CoN4 sites. In contrast, the Co nanoparticles were more inclined to facilitate the activation and cleavage of C–OH bond in FOL with 92.2 % selectivity of 2-methylfuran and its derivatives over CoNPs/NC catalyst. Although the temperature, H2 pressure and solvents can affect products distribution, their impact differences also depended on the nature of the active sites. This work underscores the importance of a thorough understanding about the structure–activity relationship, which is crucial to systematic design suitable catalysts with tailored active sites for specific catalytic reactions.

源语言英语
文章编号115043
期刊Molecular Catalysis
579
DOI
出版状态已出版 - 15 5月 2025

指纹

探究 'Distinctive pathways of single-atom and nanoparticle sites over Co-based catalysts for furfuryl alcohol hydrogenation' 的科研主题。它们共同构成独一无二的指纹。

引用此