TY - JOUR
T1 - Distributed fixed-time control for high-order multi-agent systems with FTESO and feasibility constraints
AU - Zhang, Chen
AU - Zhang, Guangming
AU - Han, Weisong
AU - Lv, Xiaodong
AU - Shi, Zhihan
N1 - Publisher Copyright:
© 2024 The Franklin Institute
PY - 2024/11
Y1 - 2024/11
N2 - In this study, a fixed-time distributed anti-disturbance control strategy is designed for a class of higher-order multi-agent systems in an undirected static topology. Inspired by the existing literature, the strategy introduces a unique way of defining neighborhood errors during the design process to deal with the connectivity maintenance and collision avoidance problems among the neighbor agents in the system. The control strategy not only solves the full state constraint and transient steady state performance constraint control problems simultaneously, but also considers the effects of internal uncertainties and external disturbances of the system, which enhances the difficulty of controller design. To address these challenges, a fixed-time extended state observer is introduced to obtain the estimation of uncertainty and disturbance . Subsequently, an integrated backstepping control scheme is designed to feed-forward compensate for uncertainties and disturbances, while constraining the transient steady-state performance of the system to remain within a predefined performance boundaries. This is achieved by combining the fixed-time prescribed performance and the barrier Lyapunov function. Finally, a simulation case is presented to verify the effectiveness of the designed control strategy.
AB - In this study, a fixed-time distributed anti-disturbance control strategy is designed for a class of higher-order multi-agent systems in an undirected static topology. Inspired by the existing literature, the strategy introduces a unique way of defining neighborhood errors during the design process to deal with the connectivity maintenance and collision avoidance problems among the neighbor agents in the system. The control strategy not only solves the full state constraint and transient steady state performance constraint control problems simultaneously, but also considers the effects of internal uncertainties and external disturbances of the system, which enhances the difficulty of controller design. To address these challenges, a fixed-time extended state observer is introduced to obtain the estimation of uncertainty and disturbance . Subsequently, an integrated backstepping control scheme is designed to feed-forward compensate for uncertainties and disturbances, while constraining the transient steady-state performance of the system to remain within a predefined performance boundaries. This is achieved by combining the fixed-time prescribed performance and the barrier Lyapunov function. Finally, a simulation case is presented to verify the effectiveness of the designed control strategy.
KW - Extended state observer
KW - Fixed-time
KW - Multi-agent systems
KW - Prescribed performance
UR - http://www.scopus.com/inward/record.url?scp=85207026083&partnerID=8YFLogxK
U2 - 10.1016/j.jfranklin.2024.107219
DO - 10.1016/j.jfranklin.2024.107219
M3 - 文章
AN - SCOPUS:85207026083
SN - 0016-0032
VL - 361
JO - Journal of the Franklin Institute
JF - Journal of the Franklin Institute
IS - 17
M1 - 107219
ER -