Dynamic Electronic and Ionic Transport Actuated by Cobalt-Doped MoSe2/rGO for Superior Potassium-Ion Batteries

Song Tao, Xinyue Zhang, Zhaoyang Gao, Tsung Yi Chen, Huihua Min, Hao Yang, Han Yi Chen, Xiaodong Shen, Jin Wang, Hui Yang

科研成果: 期刊稿件文章同行评审

25 引用 (Scopus)

摘要

Molybdenum selenium (MoSe2) has tremendous potential in potassium-ion batteries (PIBs) due to its large interlayer distance, favorable bandgap, and high theoretical specific capacity. However, the poor conductivity and large K+ insertion/extraction in MoSe2 inevitably leads to sluggish reaction kinetics and poor structural stability. Herein, Coinduced engineering is employed to illuminate high-conductivity electron pathway and mobile ion diffusion of MoSe2 nanosheets anchored on reduced graphene oxide substrate (Co-MoSe2/rGO). Benefiting from the activated electronic conductivity and ion diffusion kinetics, and an expanded interlayer spacing resulting from Co doping, combined with the interface coupling with highly conductive reduced graphene oxide (rGO) substrate through Mo-C bonding, the Co-MoSe2/rGO anode demonstrates remarkable reversible capacity, superior rate capability, and stable long-term cyclability for potassium storage, as well as superior energy density and high power density for potassium-ion capacitors. Systematic performance measurement, dynamic analysis, in-situ/ex-situ measurements, and density functional theory (DFT) calculations elucidate the performance-enhancing mechanism of Co-MoSe2/rGO in view of the electronic and ionic transport kinetics. This work offers deep atomic insights into the fundamental factors of electrodes for potassium-ion batteries/capacitors with superior electrochemical performance.

源语言英语
文章编号2304200
期刊Small
19
48
DOI
出版状态已出版 - 28 11月 2023

指纹

探究 'Dynamic Electronic and Ionic Transport Actuated by Cobalt-Doped MoSe2/rGO for Superior Potassium-Ion Batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此