TY - JOUR
T1 - Efficient synthesis of purine nucleoside analogs by a new trimeric purine nucleoside phosphorylase from Aneurinibacillus migulanus AM007
AU - Liu, Gaofei
AU - Cheng, Tiantong
AU - Chu, Jianlin
AU - Li, Sui
AU - He, Bingfang
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020
Y1 - 2020
N2 - Purine nucleoside phosphorylases (PNPs) are promising biocatalysts for the synthesis of purine nucleoside analogs. Although a number of PNPs have been reported, the development of highly efficient enzymes for industrial applications is still in high demand. Herein, a new trimeric purine nucleoside phosphorylase (AmPNP) from Aneurinibacillus migulanus AM007 was cloned and heterologously expressed in Escherichia coli BL21(DE3). The AmPNP showed good thermostability and a broad range of pH stability. The enzyme was thermostable below 55 °C for 12 h (retaining nearly 100% of its initial activity), and retained nearly 100% of the initial activity in alkaline buffer systems (pH 7.0-9.0) at 60 °C for 2 h. Then, a one-pot, two-enzyme mode of transglycosylation reaction was successfully constructed by combining pyrimidine nucleoside phosphorylase (BbPyNP) derived from Brevibacillus borstelensis LK01 and AmPNP for the production of purine nucleoside analogs. Conversions of 2,6-diaminopurine ribonucleoside (1), 2-amino-6-chloropurine ribonucleoside (2), and 6-thioguanine ribonucleoside (3) synthesized still reached >90% on the higher concentrations of substrates (pentofuranosyl donor: purine base; 20:10 mM) with a low enzyme ratio of BbPyNP: AmPNP (2:20 μg/mL). Thus, the new trimeric AmPNP is a promising biocatalyst for industrial production of purine nucleoside analogs.
AB - Purine nucleoside phosphorylases (PNPs) are promising biocatalysts for the synthesis of purine nucleoside analogs. Although a number of PNPs have been reported, the development of highly efficient enzymes for industrial applications is still in high demand. Herein, a new trimeric purine nucleoside phosphorylase (AmPNP) from Aneurinibacillus migulanus AM007 was cloned and heterologously expressed in Escherichia coli BL21(DE3). The AmPNP showed good thermostability and a broad range of pH stability. The enzyme was thermostable below 55 °C for 12 h (retaining nearly 100% of its initial activity), and retained nearly 100% of the initial activity in alkaline buffer systems (pH 7.0-9.0) at 60 °C for 2 h. Then, a one-pot, two-enzyme mode of transglycosylation reaction was successfully constructed by combining pyrimidine nucleoside phosphorylase (BbPyNP) derived from Brevibacillus borstelensis LK01 and AmPNP for the production of purine nucleoside analogs. Conversions of 2,6-diaminopurine ribonucleoside (1), 2-amino-6-chloropurine ribonucleoside (2), and 6-thioguanine ribonucleoside (3) synthesized still reached >90% on the higher concentrations of substrates (pentofuranosyl donor: purine base; 20:10 mM) with a low enzyme ratio of BbPyNP: AmPNP (2:20 μg/mL). Thus, the new trimeric AmPNP is a promising biocatalyst for industrial production of purine nucleoside analogs.
KW - Enzyme ratio
KW - Purine nucleoside analogs
KW - Thermostability
KW - Trimeric nucleoside phosphorylase
UR - http://www.scopus.com/inward/record.url?scp=85077323526&partnerID=8YFLogxK
U2 - 10.3390/molecules25010100
DO - 10.3390/molecules25010100
M3 - 文章
C2 - 31888088
AN - SCOPUS:85077323526
SN - 1420-3049
VL - 25
JO - Molecules
JF - Molecules
IS - 1
M1 - 100
ER -