TY - JOUR
T1 - Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration
T2 - A comprehensive review
AU - She, Xiaohui
AU - Cong, Lin
AU - Nie, Binjian
AU - Leng, Guanghui
AU - Peng, Hao
AU - Chen, Yi
AU - Zhang, Xiaosong
AU - Wen, Tao
AU - Yang, Hongxing
AU - Luo, Yimo
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/12/15
Y1 - 2018/12/15
N2 - Vapor Compression Refrigeration Systems (VCRS) are widely used to provide cooling or freezing for domestic/office buildings, supermarkets, data centres, etc., which expend 15% of globally electricity and contribute to ∼10% of greenhouse gas emissions globally. It is reported that cooling demand is expected to grow tenfold by 2050. Therefore, it is critical to improve the efficiency of the VCRS. In this paper, a comprehensive review of advanced and hot technologies is conducted for the VCRS. These technologies include radiative cooling, cold energy storage, defrosting and frost-free, temperature and humidity independent control (THIC), ground source heat pump (GSHP), refrigerant subcooling, and condensing heat recovery. Radiative cooling could produce a cold source ∼8 °C lower than the surroundings, which reduces the electricity consumption of the VCRS by ∼21%; cold energy storage is used to shift the peak cooling load, and as a result, the electricity consumption and operation cost of the VCRS could be reduced by ∼12% and ∼32%, respectively; frosting is a big issue of the VCRS especially for freezing applications, and more than 60% of electricity consumption for defrosting could be saved with the advanced defrosting and frost-free technologies; THIC deals with the building sensible load and latent load separately, which not only increases the COP of the VCRS by ∼35%, but also improves the building thermal comfort; GSHP uses the ground as a low-temperature cooling source for condensing the refrigerant in the VCRS in summer, which decreases the condensing temperature by ∼5 °C and correspondingly increases the COP of the VCRS by ∼14%; refrigerant subcooling and condensing heat recovery can increase the refrigerating capacity and achieve multi-functions of the VCRS, respectively. The review is summarized in terms of the technology classification, basic ideas, advantages/disadvantages, current research status and efforts to be made in the future.
AB - Vapor Compression Refrigeration Systems (VCRS) are widely used to provide cooling or freezing for domestic/office buildings, supermarkets, data centres, etc., which expend 15% of globally electricity and contribute to ∼10% of greenhouse gas emissions globally. It is reported that cooling demand is expected to grow tenfold by 2050. Therefore, it is critical to improve the efficiency of the VCRS. In this paper, a comprehensive review of advanced and hot technologies is conducted for the VCRS. These technologies include radiative cooling, cold energy storage, defrosting and frost-free, temperature and humidity independent control (THIC), ground source heat pump (GSHP), refrigerant subcooling, and condensing heat recovery. Radiative cooling could produce a cold source ∼8 °C lower than the surroundings, which reduces the electricity consumption of the VCRS by ∼21%; cold energy storage is used to shift the peak cooling load, and as a result, the electricity consumption and operation cost of the VCRS could be reduced by ∼12% and ∼32%, respectively; frosting is a big issue of the VCRS especially for freezing applications, and more than 60% of electricity consumption for defrosting could be saved with the advanced defrosting and frost-free technologies; THIC deals with the building sensible load and latent load separately, which not only increases the COP of the VCRS by ∼35%, but also improves the building thermal comfort; GSHP uses the ground as a low-temperature cooling source for condensing the refrigerant in the VCRS in summer, which decreases the condensing temperature by ∼5 °C and correspondingly increases the COP of the VCRS by ∼14%; refrigerant subcooling and condensing heat recovery can increase the refrigerating capacity and achieve multi-functions of the VCRS, respectively. The review is summarized in terms of the technology classification, basic ideas, advantages/disadvantages, current research status and efforts to be made in the future.
KW - Air conditioning
KW - Defrosting and frost-free
KW - Energy storage
KW - Heat pump
KW - Heat recovery
KW - Radiative cooling
UR - http://www.scopus.com/inward/record.url?scp=85054186793&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2018.09.067
DO - 10.1016/j.apenergy.2018.09.067
M3 - 文献综述
AN - SCOPUS:85054186793
SN - 0306-2619
VL - 232
SP - 157
EP - 186
JO - Applied Energy
JF - Applied Energy
ER -