TY - JOUR
T1 - Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity
AU - Gao, Shuying
AU - Wang, Xuyu
AU - Song, Changjian
AU - Zhou, Shijian
AU - Yang, Fu
AU - Kong, Yan
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/10/15
Y1 - 2021/10/15
N2 - Herein, carbon-defect engineering and 2-dimensional engineering are integrated into g-C3N4 at once, allowing one-pot output of ultrathin g-C3N4 photocatalyst by a thermal-triggering in-situ gas-shocking process using endogenous gas (CO2, H2O, and NH3) from urea solution. The optimal photocatalyst U1W1-CNS presents an ultrathin structure (2 nm thickness) with abundant carbon-defects in a porous state, thereby endowed with outstanding structural property (191.4 m2 g−1, 0.61 cm3 g−1). Meanwhile, benefited from the emergent carbon defects, the conduction band of U1W1-CNS can be shifted to a higher energy level, thus contributing to stronger reduction ability which was comprehensively confirmed by experimental evidence and DFT calculation, and the hydrophilicity of U1W1-CNS is further improved by more exposed edge amino moieties. As expected, U1W1-CNS affords 57 folders of hydrogen production (10.14 mmol h−1 g−1) efficiency, and greater degradation efficiency for different organic pollutants RhodamineB (k = 0.0311 min−1), tetracycline (k = 0.0135 min−1), norfloxacin (k = 0.0091 min−1), ciprofloxacin (k = 0.012 min−1), and levofloxacin (k = 0.0078 min−1).
AB - Herein, carbon-defect engineering and 2-dimensional engineering are integrated into g-C3N4 at once, allowing one-pot output of ultrathin g-C3N4 photocatalyst by a thermal-triggering in-situ gas-shocking process using endogenous gas (CO2, H2O, and NH3) from urea solution. The optimal photocatalyst U1W1-CNS presents an ultrathin structure (2 nm thickness) with abundant carbon-defects in a porous state, thereby endowed with outstanding structural property (191.4 m2 g−1, 0.61 cm3 g−1). Meanwhile, benefited from the emergent carbon defects, the conduction band of U1W1-CNS can be shifted to a higher energy level, thus contributing to stronger reduction ability which was comprehensively confirmed by experimental evidence and DFT calculation, and the hydrophilicity of U1W1-CNS is further improved by more exposed edge amino moieties. As expected, U1W1-CNS affords 57 folders of hydrogen production (10.14 mmol h−1 g−1) efficiency, and greater degradation efficiency for different organic pollutants RhodamineB (k = 0.0311 min−1), tetracycline (k = 0.0135 min−1), norfloxacin (k = 0.0091 min−1), ciprofloxacin (k = 0.012 min−1), and levofloxacin (k = 0.0078 min−1).
KW - Carbon-defects
KW - Green gas-shocking process
KW - Photoredox catalysis
KW - Ultrathin g-CN nanosheets
UR - http://www.scopus.com/inward/record.url?scp=85105326498&partnerID=8YFLogxK
U2 - 10.1016/j.apcatb.2021.120272
DO - 10.1016/j.apcatb.2021.120272
M3 - 文章
AN - SCOPUS:85105326498
SN - 0926-3373
VL - 295
JO - Applied Catalysis B: Environmental
JF - Applied Catalysis B: Environmental
M1 - 120272
ER -