TY - JOUR
T1 - Enhancement of photocatalytic performance of TaON by combining it with noble-metal-free MoS2 cocatalysts
AU - Chen, Yukai
AU - Tan, Lijuan
AU - Sun, Menglong
AU - Lu, Chunhua
AU - Kou, Jiahui
AU - Xu, Zhongzi
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/4/15
Y1 - 2019/4/15
N2 - Utilizing cocatalysts is an effective measure to enhance photocatalytic activities of photocatalysts. Nevertheless, noble-metal cocatalysts such as Pt and Au impose astounding costs on the application of photocatalytic technology. Herein, noble-metal-free MoS2 was used as a cocatalyst to improve the photocatalytic activity of visible-light-responsive TaON for the first time. This work indicates that MoS2/TaON presented higher activity than Pt/TaON while MoS2 costs much less than Pt. The photocatalytic degradation ratio of RhB over Ta1Mo1 (mass ratio of TaON:MoS2 = 1:1) was about 65% after 2 h visible light irradiation, which is about five times higher than that of pure TaON. Furthermore, MoS2/SiO2/TaON ternary photocatalysts were constructed to further improve the photocatalytic performance. When the mass ratio of Ta8Si1 (mass ratio of TaON:SiO2 = 8:1) to MoS2 was 1:1, the degradation ratio of RhB reached 75% after 2 h visible light irradiation. This work provides a facile method to construct high-efficient photocatalysts with the noble-metal-free cocatalyst MoS2, paving the way to realize the application of cheap and environment-friendly photocatalysis.
AB - Utilizing cocatalysts is an effective measure to enhance photocatalytic activities of photocatalysts. Nevertheless, noble-metal cocatalysts such as Pt and Au impose astounding costs on the application of photocatalytic technology. Herein, noble-metal-free MoS2 was used as a cocatalyst to improve the photocatalytic activity of visible-light-responsive TaON for the first time. This work indicates that MoS2/TaON presented higher activity than Pt/TaON while MoS2 costs much less than Pt. The photocatalytic degradation ratio of RhB over Ta1Mo1 (mass ratio of TaON:MoS2 = 1:1) was about 65% after 2 h visible light irradiation, which is about five times higher than that of pure TaON. Furthermore, MoS2/SiO2/TaON ternary photocatalysts were constructed to further improve the photocatalytic performance. When the mass ratio of Ta8Si1 (mass ratio of TaON:SiO2 = 8:1) to MoS2 was 1:1, the degradation ratio of RhB reached 75% after 2 h visible light irradiation. This work provides a facile method to construct high-efficient photocatalysts with the noble-metal-free cocatalyst MoS2, paving the way to realize the application of cheap and environment-friendly photocatalysis.
UR - http://www.scopus.com/inward/record.url?scp=85058702863&partnerID=8YFLogxK
U2 - 10.1007/s10853-018-03214-9
DO - 10.1007/s10853-018-03214-9
M3 - 文章
AN - SCOPUS:85058702863
SN - 0022-2461
VL - 54
SP - 5321
EP - 5330
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 7
ER -