摘要
First-principles calculations are employed to investigate the interfacial properties on the Zr-doped sulfide solid electrolytes. Theoretical calculation results show that the PS4 tetrahedral structure near the Li/Li3PS4 interface is severely damaged, whereas the Zr-doped sulfide solid electrolyte interface structure has a slight deformation. The Li ions migration energy barrier on the Zr-doped sulfide solid electrolyte interface is relatively lower than that on the Li/Li3PS4. Moreover, the stress-strain analysis indicates that the Li/Li3PS4 interface structure experiences a maximum strain of only 6 %, while the Zr-doped sulfide solid electrolyte interface structure experiences a maximum strain of 10 %. This may be attributed to the ability of Zr doping to prevent S2− diffusion into the lithium metal anode and stabilize the Li ion transport skeleton. Therefore, Zr doping can improve the interface structure stability. This study will provide a useful perspective for designing high performance of solid electrolytes for the application of all-solid-state batteries.
源语言 | 英语 |
---|---|
页(从-至) | 144-150 |
页数 | 7 |
期刊 | Current Applied Physics |
卷 | 68 |
DOI | |
出版状态 | 已出版 - 12月 2024 |