TY - JOUR
T1 - Field-scale study of co-processing dichlorodiphenyltrichloroethane-contaminated soil in a cement kiln
AU - Yang, Liuyang
AU - Wang, Lei
AU - Cui, Changhao
AU - Liu, Meijia
AU - Li, Li
AU - Yan, Dahai
N1 - Publisher Copyright:
© 2021
PY - 2021/5/1
Y1 - 2021/5/1
N2 - Persistent organic pollutants in soil are not readily degraded in the short term. The utilization of co-processing solid waste in cement kilns has received increasing attention in recent years. Co-processing may be a good way of disposing of dichlorodiphenyltrichloroethane-contaminated soil (CS). The feasibility of co-processing CS pretreated to desorb dichlorodiphenyltrichloroethane, was assessed by performing an industrial-scale trial, focusing on the risks posed by emissions to the environment. Samples of the input and output in cement kiln were collected for determining clinker quality, production operation, pollutant emissions, cement kiln system destruction efficiency, and distribution profiles of persistent organic pollutants unintentionally produced from kiln. The destruction efficiency and destruction removal efficiency both were > 99.99% in cement kiln system at the appropriate CS feeding rate. Emissions of stack gases produced by cement kilns co-processing CS were within the reasonable range set in China. Dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) concentrations and distribution profiles in flue gases and particulate samples from two tests showed PCBs mainly formed at the same sites as PCDD/Fs, indicating they are may formed in a similar way in cement kiln. A comparison with the processing parameters in the clinker, cement kiln dust, and flue gas under baseline and co-processing conditions, manifested that co-processing had no effect on the operation or cement quality of the cement kiln. Thus co-processing CS at a rate of 20 t/h with pretreatment process, is an environmentally sound and highly efficient treatment for CS.
AB - Persistent organic pollutants in soil are not readily degraded in the short term. The utilization of co-processing solid waste in cement kilns has received increasing attention in recent years. Co-processing may be a good way of disposing of dichlorodiphenyltrichloroethane-contaminated soil (CS). The feasibility of co-processing CS pretreated to desorb dichlorodiphenyltrichloroethane, was assessed by performing an industrial-scale trial, focusing on the risks posed by emissions to the environment. Samples of the input and output in cement kiln were collected for determining clinker quality, production operation, pollutant emissions, cement kiln system destruction efficiency, and distribution profiles of persistent organic pollutants unintentionally produced from kiln. The destruction efficiency and destruction removal efficiency both were > 99.99% in cement kiln system at the appropriate CS feeding rate. Emissions of stack gases produced by cement kilns co-processing CS were within the reasonable range set in China. Dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) concentrations and distribution profiles in flue gases and particulate samples from two tests showed PCBs mainly formed at the same sites as PCDD/Fs, indicating they are may formed in a similar way in cement kiln. A comparison with the processing parameters in the clinker, cement kiln dust, and flue gas under baseline and co-processing conditions, manifested that co-processing had no effect on the operation or cement quality of the cement kiln. Thus co-processing CS at a rate of 20 t/h with pretreatment process, is an environmentally sound and highly efficient treatment for CS.
KW - Cement kiln co-processing
KW - DDT-contaminated soil
KW - Field-scale study
KW - PCBs
KW - PCDD/Fs
UR - http://www.scopus.com/inward/record.url?scp=85102866490&partnerID=8YFLogxK
U2 - 10.1016/j.wasman.2021.03.015
DO - 10.1016/j.wasman.2021.03.015
M3 - 文章
C2 - 33752154
AN - SCOPUS:85102866490
SN - 0956-053X
VL - 126
SP - 133
EP - 140
JO - Waste Management
JF - Waste Management
ER -