摘要
Folate receptor-targeted multifunctional fluorescent magnetic nanoparticles (FMNPs) composed of cores containing iron oxide nanocrystals and amphiphilic oligo(p-phenyleneethynylene) shells with multimodal imaging capability were successfully prepared through a convenient hydrophobic encapsulation approach. The iron oxide nanoparticles in the core provided T2-weighted magnetic resonance imaging (MRI), whereas the amphiphilic oligomers on the surface of the nanoparticles introduced good water-solubility, biocompatibility, excellent fluorescent properties and cancer-targeting. These nanoparticles exhibited superparamagnetic properties with saturation magnetization (Ms) of 23 emu g-1 and a transverse relaxivity rate of 140.89 mM-1 s-1. In vitro studies indicated that the dual-modal FMNPs can serve as an effective two-photon fluorescent and a magnetic probe to achieve the targeted imaging of Hela cells without obvious cytotoxicity. In vivo two-photon fluorescence and MRI results demonstrated that the FMNPs were able to preferentially accumulate in tumor tissues to allow dual-modal detection of tumors in a living body. These studies provided insight in developing novel multifunctional probes for multimodal imaging, which would play an important role for theranostics in biomedical science.
源语言 | 英语 |
---|---|
页(从-至) | 8907-8919 |
页数 | 13 |
期刊 | Nanoscale |
卷 | 7 |
期 | 19 |
DOI | |
出版状态 | 已出版 - 21 5月 2015 |