摘要
Hydrogels that are capable of autonomous healing upon damage have attracted wide attention in recent years. The design and fabrication of hydrogels possessing both excellent self-healing and high strength is highly desired. Herein, we report the facile synthesis of self-healing poly(MAH-β-CD-co-AA) hydrogels (MAH-β-CD = β-cyclodextrin grafted vinyl carboxylic acid groups; AA = acroleic acid) via frontal polymerization (FP) for the first time. When ignited by a soldering iron, frontal polymerization occurred to fabricate poly(MAH-β-CD-co-AA) hydrogels within 10 min. The as-fabricated hydrogels exhibited pH sensitivity and high mechanical strength and could repair themselves autonomously without any external stimuli. In addition, we reinforced poly(MAH-β-CD-co-AA) hydrogel through further cross-linking with N-isopropylacrylamide to form a double network (DN) hydrogel. Benefiting from the excellent self-healing property, a Janus bilayer hydrogel toward temperature-triggered actuator was achieved by simply sticking poly(MAH-β-CD-co-AA) and DN hydrogel together. This hydrogel actuator was very sensitive to thermal stimulus, which showed a rapid response in several seconds. This work might promote the development of diverse functional self-healing hydrogels via a facile and flexible pathway.
源语言 | 英语 |
---|---|
页(从-至) | 3885-3892 |
页数 | 8 |
期刊 | Industrial and Engineering Chemistry Research |
卷 | 58 |
期 | 9 |
DOI | |
出版状态 | 已出版 - 6 3月 2019 |