TY - JOUR
T1 - Functional genera for efficient nitrogen removal under low C/N ratio influent at low temperatures in a two-stage tidal flow constructed wetland
AU - Pang, Qingqing
AU - Xu, Wenwen
AU - He, Fei
AU - Peng, Fuquan
AU - Zhu, Xiang
AU - Xu, Bin
AU - Yu, Jianghua
AU - Jiang, Zewei
AU - Wang, Longmian
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1/15
Y1 - 2022/1/15
N2 - A two-stage tidal flow constructed wetland (referred to as TFCW-A and TFCW-B) was used to treat low chemical oxygen demand/total nitrogen (COD/TN or simply C/N) ratio influent at low temperatures (<15 °C). The influence of the flooding-resting time (A: 8 h–4 h, B: 4 h–8 h) and effluent recirculation on nitrogen removal and microbial community characteristics were explored. TFCW-B achieved optimal average nitrogen removal efficiency with effluent recirculation (96.05% ammonium nitrogen (NH4+-N); 78.43% TN) and led to nitrate nitrogen (NO3−-N) accumulation due to the lack of a carbon source and longer resting time. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were inhibited at low temperatures. Except for nrfA, AOA, AOB, narG and nirS were separated by the flooding-resting time rather than by spatial position. Furthermore, the dominant genera in TFCW-A were Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea, whereas prolonging resting time promoted the growth of Thauera and Zoogloea in TFCW-B. Spearman correlation analysis showed that Zoogloea and Rhodobacter had the strongest correlations with other genera. Moreover, the NH4+-N concentration was significantly positively influenced by Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea but negatively influenced by Thauera and Zoogloea. There was no significant correlation between TN and the dominant genera. This study not only provides a practicable system for wastewater treatment with a low C/N ratio but also presents a theoretical basis for the regulation of microbial communities in nitrogen removal systems at low temperatures.
AB - A two-stage tidal flow constructed wetland (referred to as TFCW-A and TFCW-B) was used to treat low chemical oxygen demand/total nitrogen (COD/TN or simply C/N) ratio influent at low temperatures (<15 °C). The influence of the flooding-resting time (A: 8 h–4 h, B: 4 h–8 h) and effluent recirculation on nitrogen removal and microbial community characteristics were explored. TFCW-B achieved optimal average nitrogen removal efficiency with effluent recirculation (96.05% ammonium nitrogen (NH4+-N); 78.43% TN) and led to nitrate nitrogen (NO3−-N) accumulation due to the lack of a carbon source and longer resting time. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were inhibited at low temperatures. Except for nrfA, AOA, AOB, narG and nirS were separated by the flooding-resting time rather than by spatial position. Furthermore, the dominant genera in TFCW-A were Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea, whereas prolonging resting time promoted the growth of Thauera and Zoogloea in TFCW-B. Spearman correlation analysis showed that Zoogloea and Rhodobacter had the strongest correlations with other genera. Moreover, the NH4+-N concentration was significantly positively influenced by Arthrobacter, Rhodobacter, Pseudomonas, and Solitalea but negatively influenced by Thauera and Zoogloea. There was no significant correlation between TN and the dominant genera. This study not only provides a practicable system for wastewater treatment with a low C/N ratio but also presents a theoretical basis for the regulation of microbial communities in nitrogen removal systems at low temperatures.
KW - Low temperature
KW - Nitrogen removal
KW - Two-stage tidal flow constructed wetland
KW - narG
KW - nirS
UR - http://www.scopus.com/inward/record.url?scp=85114641072&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2021.150142
DO - 10.1016/j.scitotenv.2021.150142
M3 - 文章
C2 - 34509836
AN - SCOPUS:85114641072
SN - 0048-9697
VL - 804
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 150142
ER -