摘要
Exploring the relationship between semiconductor structure and surface-enhanced Raman scattering (SERS) activity was essential for the development of ultrasensitive SERS substrates. Herein, we report an ytterbium atomic doping strategy to render TiO2 (Yb-TiO2) highly SERS sensitive superior to pure TiO2, with a detection limit as low as 1 × 10-9 M for 4-mercaptobenzoic acid. First-principles density functional theory calculations reveal that ytterbium doping leads to high electrostatic properties, allowing for significant charge transfer from molecules to semiconductors. Theoretical and experimental results indicate that Yb-TiO2 has a smaller band gap and higher density of states, which effectively enhance charge transfer between molecules and substrates, resulting in significant SERS activity. More importantly, Yb-TiO2 was particularly stable in air and acid solution and can be used for trace molecule detection in extreme environments. We demonstrate a promising approach to construct ultrasensitive SERS by optimizing the electronic structure induced by geometric structures.
源语言 | 英语 |
---|---|
页(从-至) | 17608-17616 |
页数 | 9 |
期刊 | Inorganic Chemistry |
卷 | 63 |
期 | 38 |
DOI | |
出版状态 | 已出版 - 23 9月 2024 |