Graphitic Nanocarbon with Engineered Defects for High-Performance Potassium-Ion Battery Anodes

Wenli Zhang, Jun Ming, Wenli Zhao, Xiaochen Dong, Mohamed N. Hedhili, Pedro M.F.J. Costa, Husam N. Alshareef

科研成果: 期刊稿件文章同行评审

284 引用 (Scopus)

摘要

The application of graphite anodes in potassium-ion batteries (KIB) is limited by the large variation in lattice volume and the low diffusion coefficient of potassium ions during (de)potassiation. This study demonstrates nitrogen-doped, defect-rich graphitic nanocarbons (GNCs) as high-performance KIB anodes. The GNCs with controllable defect densities are synthesized by annealing an ethylenediaminetetraacetic acid nickel coordination compound. The GNCs show better performance than the previously reported thin-walled graphitic carbonaceous materials such as carbon nanocages and nanotubes. In particular, the GNC prepared at 600 °C shows a stabilized capacity of 280 mAh g−1 at 50 mA g−1, robust rate capability, and long cycling life due to its high-nitrogen-doping, short-range-ordered, defect-rich graphitic structure. A high capacity of 189 mAh g−1 with a long cycle life over 200 cycles is demonstrated at a current density of 200 mA g−1. Further, it is confirmed that the potassium ion storage mechanism of GNCs is different from that of graphite using multiple characterization methods. Specifically, the GNCs with numerous defects provide more active sites for the potassiation process, which results in a final discharge product with short-range order. This study opens a new pathway for designing graphitic carbonaceous materials for KIB anodes.

源语言英语
文章编号1903641
期刊Advanced Functional Materials
29
35
DOI
出版状态已出版 - 8月 2019

指纹

探究 'Graphitic Nanocarbon with Engineered Defects for High-Performance Potassium-Ion Battery Anodes' 的科研主题。它们共同构成独一无二的指纹。

引用此