TY - JOUR
T1 - High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries
AU - Shen, Yinlin
AU - Wang, Yujia
AU - Miao, Yingchun
AU - Yang, Meng
AU - Zhao, Xiangyu
AU - Shen, Xiaodong
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Rechargeable magnesium batteries (RMB) have been regarded as an alternative to lithium-based batteries because of their abundant elemental resource, high theoretical volumetric capacity, and multi-electron redox reaction without the dendrite formation of magnesium metal anode. However, their development is impeded by their poor electrode/electrolyte compatibility and the strong Coulombic effect of the multivalent Mg2+ ions in cathode materials. Herein, copper sulfide material is developed as a high-energy cathode for RMBs with a non-corrosive Mg-ion electrolyte. Given the benefit of its optimized interlayer structure, good compatibility with the electrolyte, and enhanced surface area, the as-prepared copper sulfide cathode exhibits unprecedented electrochemical Mg-ion storage properties, with the highest specific capacity of 477 mAh g−1 and gravimetric energy density of 415 Wh kg−1 at 50 mA g−1, among the reported cathode materials of metal oxides, metal chalcogenides, and polyanion-type compounds for RMBs. Notably, an impressive long-term cycling performance with a stable capacity of 111 mAh g−1 at 1 C (560 mA g−1) is achieved over 1000 cycles. The results of the present study offer an avenue for designing high-performance cathode materials for RMBs and other multivalent batteries.
AB - Rechargeable magnesium batteries (RMB) have been regarded as an alternative to lithium-based batteries because of their abundant elemental resource, high theoretical volumetric capacity, and multi-electron redox reaction without the dendrite formation of magnesium metal anode. However, their development is impeded by their poor electrode/electrolyte compatibility and the strong Coulombic effect of the multivalent Mg2+ ions in cathode materials. Herein, copper sulfide material is developed as a high-energy cathode for RMBs with a non-corrosive Mg-ion electrolyte. Given the benefit of its optimized interlayer structure, good compatibility with the electrolyte, and enhanced surface area, the as-prepared copper sulfide cathode exhibits unprecedented electrochemical Mg-ion storage properties, with the highest specific capacity of 477 mAh g−1 and gravimetric energy density of 415 Wh kg−1 at 50 mA g−1, among the reported cathode materials of metal oxides, metal chalcogenides, and polyanion-type compounds for RMBs. Notably, an impressive long-term cycling performance with a stable capacity of 111 mAh g−1 at 1 C (560 mA g−1) is achieved over 1000 cycles. The results of the present study offer an avenue for designing high-performance cathode materials for RMBs and other multivalent batteries.
KW - cathode materials
KW - copper sulfide
KW - interlayer expansion
KW - magnesium batteries
KW - non-corrosive electrolyte
UR - http://www.scopus.com/inward/record.url?scp=85076372511&partnerID=8YFLogxK
U2 - 10.1002/adma.201905524
DO - 10.1002/adma.201905524
M3 - 文章
C2 - 31814193
AN - SCOPUS:85076372511
SN - 0935-9648
VL - 32
JO - Advanced Materials
JF - Advanced Materials
IS - 4
M1 - 1905524
ER -