TY - JOUR
T1 - High performance gel polymer electrolyte based on P(MMA-co-Sty) and PVDF blend for fast-charging lithium metal batteries with extended cycle life
AU - Yao, Wangbing
AU - Zheng, Zhuoyuan
AU - Zhang, Xudong
AU - Zhou, Jie
AU - Song, Jinbao
AU - Liu, Dongming
AU - Zhu, Yusong
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/9/15
Y1 - 2024/9/15
N2 - In the quest for high-energy-density lithium metal batteries (LMBs), the stabilization of lithium (Li) metal anodes during fast charging remains a formidable challenge. In this study, a novel copolymer, Poly(methyl methacrylate-co-styrene) (namely PMS) is synthesized and blended with Poly(vinylidene fluoride) to fabricate a porous gel polymer electrolyte (GPE, namely PMS-PVDF) through the nonsolvent-induced phase separation technique, which significantly enhances the electrochemical stability and fast-charging capabilities of LMBs. The developed GPE exhibits a high ionic conductivity of 5.62 mS cm−1, thereby reducing the formation of detrimental Li dendrites and leading to over 400 h stripping/plating process at 0.5 mA cm−2. Extensive electrochemical tests show that the LMBs with the obtained PMS-PVDF GPE achieve exceptional cycle stability over 600 and 1000 cycles at the C-rates of 0.5 and 3 C, respectively, outperforming traditional electrolytes. Furthermore, the ultra-stability of the quasi-solid-state electrolyte is demonstrated in a 375 mAh pouch cell setup, suggesting an essential trait for the practical application of high-power devices. This work marks a pivotal contribution to the field of energy storage, delivering insights and a clear methodology that pave the way for the development of next-generation LMBs poised for commercial viability.
AB - In the quest for high-energy-density lithium metal batteries (LMBs), the stabilization of lithium (Li) metal anodes during fast charging remains a formidable challenge. In this study, a novel copolymer, Poly(methyl methacrylate-co-styrene) (namely PMS) is synthesized and blended with Poly(vinylidene fluoride) to fabricate a porous gel polymer electrolyte (GPE, namely PMS-PVDF) through the nonsolvent-induced phase separation technique, which significantly enhances the electrochemical stability and fast-charging capabilities of LMBs. The developed GPE exhibits a high ionic conductivity of 5.62 mS cm−1, thereby reducing the formation of detrimental Li dendrites and leading to over 400 h stripping/plating process at 0.5 mA cm−2. Extensive electrochemical tests show that the LMBs with the obtained PMS-PVDF GPE achieve exceptional cycle stability over 600 and 1000 cycles at the C-rates of 0.5 and 3 C, respectively, outperforming traditional electrolytes. Furthermore, the ultra-stability of the quasi-solid-state electrolyte is demonstrated in a 375 mAh pouch cell setup, suggesting an essential trait for the practical application of high-power devices. This work marks a pivotal contribution to the field of energy storage, delivering insights and a clear methodology that pave the way for the development of next-generation LMBs poised for commercial viability.
KW - Extended cycle life
KW - Fast-charging
KW - Gel polymer electrolyte
KW - Lithium metal battery
KW - Nonsolvent-induced phase separation
UR - http://www.scopus.com/inward/record.url?scp=85197267174&partnerID=8YFLogxK
U2 - 10.1016/j.jpowsour.2024.234999
DO - 10.1016/j.jpowsour.2024.234999
M3 - 文章
AN - SCOPUS:85197267174
SN - 0378-7753
VL - 614
JO - Journal of Power Sources
JF - Journal of Power Sources
M1 - 234999
ER -