High power-density single-chamber fuel cells operated on methane

Zongping Shao, Jennifer Mederos, William C. Chueh, Sossina M. Haile

科研成果: 期刊稿件文章同行评审

102 引用 (Scopus)

摘要

Single-chamber solid oxide fuel cells (SC-SOFCs) incorporating thin-film Sm0.15Ce0.85O1.925 (SDC) as the electrolyte, thick Ni + SDC as the (supporting) anode and SDC + BSCF (Ba0.5Sr0.5Co0.8Fe0.2O3-δ) as the cathode were operated in a mixture of methane, oxygen and helium at furnace temperatures of 500-650 °C. Because of the exothermic nature of the oxidation reactions that occur at the anode, the cell temperature was as much as 150 °C greater than the furnace temperature. Overall, the open circuit voltage was only slightly sensitive to temperature and gas composition, varying from ∼0.70 to ∼0.78 V over the range of conditions explored. In contrast, the power density strongly increased with temperature and broadly peaked at a methane to oxygen ratio of ∼1:1. At a furnace temperature of 650 °C (cell temperature ∼790 °C), a peak power density of 760 mW cm-2 was attained using a mixed gas with methane, oxygen and helium flow rates of 87, 80 and 320 mL min-1 [STP], respectively. This level of power output is the highest reported in the literature for single chamber fuel cells and reflects the exceptionally high activity of the BSCF cathode for oxygen electro-reduction and its low activity for methane oxidation.

源语言英语
页(从-至)589-596
页数8
期刊Journal of Power Sources
162
1
DOI
出版状态已出版 - 8 11月 2006
已对外发布

指纹

探究 'High power-density single-chamber fuel cells operated on methane' 的科研主题。它们共同构成独一无二的指纹。

引用此