TY - JOUR
T1 - H2S-releasing versatile hydrogel dressing with potent antimicrobial, anti-inflammatory, epithelialization and angiogenic capabilities for diabetic wound healing
AU - Chen, Jiale
AU - Mu, Zhixiang
AU - Chen, Dongfan
AU - Huang, Chen
AU - Jin, Ting
AU - Li, Lin
AU - Zeng, Youyun
AU - Zhou, Qiang
AU - Zhang, Yanmei
AU - Mao, Hongli
AU - Deng, Hui
AU - Shen, Xinkun
AU - Yang, Hong
AU - Cai, Xiaojun
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Smart hydrogel dressings capable of simultaneously highly effective antimicrobial, anti-inflammatory, and promoting re-epithelialization and angiogenesis are urgently needed for the management of diabetic wounds. Herein, a H2S-releasing multifunctional hydrogel was developed by utilizing the dynamic Schiff base reaction between carboxymethyl chitosan (CMC) and polyhexamethylene guanidine (PHMG)-modified aldehyde F108 (PFC). Diallyl trisulfide (DATS) was encapsulated into the PFC nanoparticles. Apart from possessing the essential properties necessary for an idealized hydrogel dressing, such as excellent injectability, tissue adhesion, self-healing, and stimulus–response degradation, the DATS@PFC&CMC also utilized the synergistic effect of the PHMG and DATS to provide an efficient antimicrobial effect; the H2S was slowly released from the DATS under the action of GSH and exerted excellent anti-inflammatory effects, by inhibiting the expression of p-ERK and p-STAT3 in activated macrophages, and promoting macrophage polarization to the M2 phenotype. Strikingly, following the completion of the efficient antimicrobial and anti-inflammatory effects, the continuously generated H2S further significantly accelerated the proliferation, migration, and vascularization of endothelial cells by extending the activation of the p-p38 and p-ERK1/2. Owing to superior performances, DATS@PFC&CMC significantly promoted the healing of diabetic wounds induced by streptozotocin with good biocompatibility. This study demonstrates that DATS@PFC&CMC is a versatile hydrogel dressing with great potential for the management of diabetic wounds.
AB - Smart hydrogel dressings capable of simultaneously highly effective antimicrobial, anti-inflammatory, and promoting re-epithelialization and angiogenesis are urgently needed for the management of diabetic wounds. Herein, a H2S-releasing multifunctional hydrogel was developed by utilizing the dynamic Schiff base reaction between carboxymethyl chitosan (CMC) and polyhexamethylene guanidine (PHMG)-modified aldehyde F108 (PFC). Diallyl trisulfide (DATS) was encapsulated into the PFC nanoparticles. Apart from possessing the essential properties necessary for an idealized hydrogel dressing, such as excellent injectability, tissue adhesion, self-healing, and stimulus–response degradation, the DATS@PFC&CMC also utilized the synergistic effect of the PHMG and DATS to provide an efficient antimicrobial effect; the H2S was slowly released from the DATS under the action of GSH and exerted excellent anti-inflammatory effects, by inhibiting the expression of p-ERK and p-STAT3 in activated macrophages, and promoting macrophage polarization to the M2 phenotype. Strikingly, following the completion of the efficient antimicrobial and anti-inflammatory effects, the continuously generated H2S further significantly accelerated the proliferation, migration, and vascularization of endothelial cells by extending the activation of the p-p38 and p-ERK1/2. Owing to superior performances, DATS@PFC&CMC significantly promoted the healing of diabetic wounds induced by streptozotocin with good biocompatibility. This study demonstrates that DATS@PFC&CMC is a versatile hydrogel dressing with great potential for the management of diabetic wounds.
KW - Anti-inflammatory
KW - Antimicrobial
KW - Diabetic wounds
KW - HS gas therapy
KW - Re-epithelialization and Angiogenesis
UR - http://www.scopus.com/inward/record.url?scp=85163107019&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.143985
DO - 10.1016/j.cej.2023.143985
M3 - 文章
AN - SCOPUS:85163107019
SN - 1385-8947
VL - 469
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 143985
ER -