TY - JOUR
T1 - In Situ Construction of Crumpled Ti3C2Tx Nanosheets Confined S-Doping Red Phosphorus by Ti-O-P Bonds for LIBs Anode with Enhanced Electrochemical Performance
AU - Jiang, Wei
AU - Wang, Zuchun
AU - Li, Qian
AU - Ren, Jian
AU - Xu, Yang
AU - Zhao, Erlin
AU - Li, Yajun
AU - Li, Yi
AU - Pan, Limei
AU - Yang, Jian
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/10/2
Y1 - 2024/10/2
N2 - Red phosphorus (RP) with a high theoretical specific capacity (2596 mA h g-1) and a moderate lithiation potential (∼0.7 V vs Li+/Li) holds promise as an anode material for lithium-ion batteries (LIBs), which still confronts discernible challenges, including low electrical conductivity, substantial volumetric expansion of 300%, and the shuttle effect induced by soluble lithium polyphosphide (LixPPs). Here, S-NRP@Ti3C2Tx composites were in situ prepared through a phosphorus-amine-based method, wherein S-doped red phosphorus nanoparticles (S-NRP) grew and anchored on the crumpled Ti3C2Tx nanosheets via Ti-O-P bonds, constructing a three-dimensional porous structure which provides fast channels for ion and electron transport and effectively buffers the volume expansion of RP. Interestingly, based on the results of adsorption experiments of polyphosphate and DFT calculation, Ti3C2Tx with abundant oxygen functional groups delivers a strong chemical adsorption effect on LixPPs, thus suppressing the shuttle effect and reducing irreversible capacity loss. Furthermore, S-doping improved the conductivity of red phosphorus nanoparticles, facilitating Li-P redox kinetics. Hence, the S-NRP@Ti3C2Tx anode demonstrates outstanding rate performance (1824 and 1090 mA h g-1 at 0.2 and 4.0 A g-1, respectively) and superior cycling performance (1401 mAh g-1 after 500 cycles at 2.0 A g-1).
AB - Red phosphorus (RP) with a high theoretical specific capacity (2596 mA h g-1) and a moderate lithiation potential (∼0.7 V vs Li+/Li) holds promise as an anode material for lithium-ion batteries (LIBs), which still confronts discernible challenges, including low electrical conductivity, substantial volumetric expansion of 300%, and the shuttle effect induced by soluble lithium polyphosphide (LixPPs). Here, S-NRP@Ti3C2Tx composites were in situ prepared through a phosphorus-amine-based method, wherein S-doped red phosphorus nanoparticles (S-NRP) grew and anchored on the crumpled Ti3C2Tx nanosheets via Ti-O-P bonds, constructing a three-dimensional porous structure which provides fast channels for ion and electron transport and effectively buffers the volume expansion of RP. Interestingly, based on the results of adsorption experiments of polyphosphate and DFT calculation, Ti3C2Tx with abundant oxygen functional groups delivers a strong chemical adsorption effect on LixPPs, thus suppressing the shuttle effect and reducing irreversible capacity loss. Furthermore, S-doping improved the conductivity of red phosphorus nanoparticles, facilitating Li-P redox kinetics. Hence, the S-NRP@Ti3C2Tx anode demonstrates outstanding rate performance (1824 and 1090 mA h g-1 at 0.2 and 4.0 A g-1, respectively) and superior cycling performance (1401 mAh g-1 after 500 cycles at 2.0 A g-1).
KW - bonds
KW - LiPP
KW - LIBs anode
KW - S-doping red phosphorus
KW - TiCT
KW - Ti−O−P
UR - http://www.scopus.com/inward/record.url?scp=85205604847&partnerID=8YFLogxK
U2 - 10.1021/acsami.4c11060
DO - 10.1021/acsami.4c11060
M3 - 文章
C2 - 39315720
AN - SCOPUS:85205604847
SN - 1944-8244
VL - 16
SP - 52393
EP - 52405
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 39
ER -