Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex

Desiree Faye Kaixin Toh, Gitali Devi, Kiran M. Patil, Qiuyu Qu, Manikantha Maraswami, Yunyun Xiao, Teck Peng Loh, Yanli Zhao, Gang Chen

科研成果: 期刊稿件文章同行评审

46 引用 (Scopus)

摘要

RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.

源语言英语
页(从-至)9071-9082
页数12
期刊Nucleic Acids Research
44
19
DOI
出版状态已出版 - 2 11月 2016
已对外发布

指纹

探究 'Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex' 的科研主题。它们共同构成独一无二的指纹。

引用此