Lignin in Ethylene Glycol and Poly(ethylene glycol): Fortified Lubricants with Internal Hydrogen Bonding

Liwen Mu, Yijun Shi, Huaiyuan Wang, Jiahua Zhu

科研成果: 期刊稿件文章同行评审

65 引用 (Scopus)

摘要

Lignin, one of the most naturally abundant polymers, has been successfully incorporated into ethylene glycol (EG) and poly(ethylene glycol) (PEG) in this work and fortified lubricating properties were achieved in EG/lignin and PEG/lignin. The molecular interaction between lignin and EG (or PEG) has been revealed as hydrogen bonding, which serves as the dominating factor that determines the thermal, rheological, and tribological properties of the mixed systems of EG/lignin and PEG/lignin. The physicochemical properties of the mixed lubricants are tightly related to the state of internal hydrogen bonding (EG-EG, PEG-PEG, EG-lignin, PEG-lignin, and lignin-lignin) and are well correlated to their lubrication properties. Generally, larger lignin fractions lead to better lubricating performance in both EG and PEG systems. Lignin liquefaction in PEG has been addressed by catalytic degradation with the presence of sulfuric acid, which was then neutralized by triethanolamine for lubricant development. Lignin in PEG significantly improves the lubricating property at higher pressure conditions, where a wear reduction of 94.6% was observed. Lignin fortified EG and PEG based lubricants show outstanding noncorrosive characteristic to the mostly used metal materials such as aluminum and iron.

源语言英语
页(从-至)1840-1849
页数10
期刊ACS Sustainable Chemistry and Engineering
4
3
DOI
出版状态已出版 - 7 3月 2016
已对外发布

指纹

探究 'Lignin in Ethylene Glycol and Poly(ethylene glycol): Fortified Lubricants with Internal Hydrogen Bonding' 的科研主题。它们共同构成独一无二的指纹。

引用此