TY - JOUR
T1 - Low dielectric loss of Bi-doped BaZr0.15Ti0.85O3 ceramics for high-voltage capacitor applications
AU - Zhang, Yan
AU - Li, Yaoyao
AU - Zhu, Haikui
AU - Fu, Zhenxiao
AU - Zhang, Qitu
N1 - Publisher Copyright:
© 2017 Elsevier Ltd and Techna Group S.r.l.
PY - 2017/10/15
Y1 - 2017/10/15
N2 - BaZr0.15Ti0.85O3 ceramics are prepared via the conventional solid state reaction method. The effects of Bi2O3·3TiO2 doped on dielectric properties and breakdown strength of BaZr0.15Ti0.85O3 ceramics are systematically discussed. Doping of Bi2O3·3TiO2 can obviously improve the breakdown strength and reduce the dielectric loss of the material. It is attributed to the Bi3+ substituted Ba2+ is an unequal ion substitution, and two Bi3+ substitute three Ba2+ to produce an A vacancy, thereby increasing the lattice energy and promoting the diffusion and migration of the particles during the sintering process, promoting the sintering and reducing the sintering temperature. However, the dielectric constant of the material is decreased. When the amount of Bi2O3·3TiO2 is 12 mol%, the minimum dielectric loss tanδ = 0.0009, the maximum breakdown strength is Eb = 15.09 kV/mm, the insulation resistivity is 3.52 × 1011 Ω cm. The energy storage density of the BaZr0.15Ti0.85O3 ceramic samples doped with Bi2O3·3TiO2 varies from 0.008 J/cm3 to 0.012 J/cm3.
AB - BaZr0.15Ti0.85O3 ceramics are prepared via the conventional solid state reaction method. The effects of Bi2O3·3TiO2 doped on dielectric properties and breakdown strength of BaZr0.15Ti0.85O3 ceramics are systematically discussed. Doping of Bi2O3·3TiO2 can obviously improve the breakdown strength and reduce the dielectric loss of the material. It is attributed to the Bi3+ substituted Ba2+ is an unequal ion substitution, and two Bi3+ substitute three Ba2+ to produce an A vacancy, thereby increasing the lattice energy and promoting the diffusion and migration of the particles during the sintering process, promoting the sintering and reducing the sintering temperature. However, the dielectric constant of the material is decreased. When the amount of Bi2O3·3TiO2 is 12 mol%, the minimum dielectric loss tanδ = 0.0009, the maximum breakdown strength is Eb = 15.09 kV/mm, the insulation resistivity is 3.52 × 1011 Ω cm. The energy storage density of the BaZr0.15Ti0.85O3 ceramic samples doped with Bi2O3·3TiO2 varies from 0.008 J/cm3 to 0.012 J/cm3.
KW - BiO·3TiO doped
KW - Breakdown strength
KW - Dielectric properties
KW - High-voltage capacitor
KW - Low tanδ
UR - http://www.scopus.com/inward/record.url?scp=85021325727&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2017.06.077
DO - 10.1016/j.ceramint.2017.06.077
M3 - 文章
AN - SCOPUS:85021325727
SN - 0272-8842
VL - 43
SP - 12186
EP - 12190
JO - Ceramics International
JF - Ceramics International
IS - 15
ER -