Magnetically Responsive Core-Shell Fe3O4@C Adsorbents for Efficient Capture of Aromatic Sulfur and Nitrogen Compounds

Peng Tan, Yao Jiang, Xiao Qin Liu, Dong Yuan Zhang, Lin Bing Sun

科研成果: 期刊稿件文章同行评审

53 引用 (Scopus)

摘要

Elimination of aromatic sulfur and nitrogen compounds via selective adsorption is an effective method for the purification of transportation fuels to meet the increasingly stringent environmental requirements. Since the adsorption processes proceed in liquid phases, separation and recycling of adsorbents should be greatly facilitated if they were endowed with magnetism. In the present study, magnetically responsive core-shell microspheres, Fe3O4@C, which comprise a magnetite core and a carbon shell with a thickness adjustable from 47 to 97 nm, were fabricated for the adsorption of aromatic sulfur and nitrogen compounds. The carbon shell derived from the carbonization of a resorcinol-formaldehyde polymer possesses abundant porosity with a hierarchical structure, which is highly active in the capture of aromatic sulfur and nitrogen compounds despite the absence of any active metal sites such as Cu(I) and Ag(I). Our results show that the Fe3O4@C adsorbents with BET surface areas ranging from 227 to 264 m2 g-1 are capable of removing thiophene (0.483 mmol g-1), benzothiophene (0.476 mmol g-1), indole (0.463 mmol g-1), and quinolone (0.297 mmol g-1) efficiently under ambient conditions. More importantly, the superparamagnetism allows the adsorbents to be separated conveniently from the adsorption system by the use of an external field. The regenerated adsorbents after six cycles still exhibit a good adsorption capacity comparable to that of the fresh one. The present magnetically responsive core-shell Fe3O4@C adsorbents with low cost, high efficiency, and convenient recycling make them highly promising in the purification of transportation fuels. (Figure Presented).

源语言英语
页(从-至)2223-2231
页数9
期刊ACS Sustainable Chemistry and Engineering
4
4
DOI
出版状态已出版 - 4 4月 2016

指纹

探究 'Magnetically Responsive Core-Shell Fe3O4@C Adsorbents for Efficient Capture of Aromatic Sulfur and Nitrogen Compounds' 的科研主题。它们共同构成独一无二的指纹。

引用此