TY - JOUR
T1 - Molecular insight into wetting behavior of deep eutectic solvent droplets on ionic substrates
T2 - A molecular dynamics study
AU - Gao, Qingwei
AU - Wu, Nanhua
AU - Qin, Yao
AU - Laaksonen, Aatto
AU - Zhu, Yudan
AU - Ji, Xiaoyan
AU - Lu, Xiaohua
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Wetting behavior of droplets made of choline chloride/urea (1:2), an archetypal deep eutectic solvent mixture, is studied using molecular dynamics simulations. The droplets are placed on a smooth model ionic substrate with positive and negative charges of the same magnitude q (0 e ≤ q ≤ 1.0 e), corresponding to a step-by-step change from a hydrophobic to hydrophilic surface. The molecular microstructure of the droplets and their spatial compositions are systematically studied in details on how they both change while gradually moving from hydrophobic to hydrophilic surface. It is observed that urea initially forms a monolayer on the surface with a planar orientation. This layer slowly shrinks while it becomes laterally more and more constrained. It becomes also molecularly more ordered when the surface becomes hydrophilic, at the same time as the contact angles become larger and larger. The anions (Cl-) are continuously pushed further away from the charged surface. While the contact angle increases and wetting decreases, and urea forms even a secondary stable layer where it changes its orientation and turns to have one of its amines facing up and carbonyl down. The average number of urea-urea H-bonds decreases linearly while the number of ion-pair contacts increases when the urea molecules are separating from the mixture. Our analysis gives a clear molecular understanding of the process and can be useful in many applications from membrane separation to catalysis.
AB - Wetting behavior of droplets made of choline chloride/urea (1:2), an archetypal deep eutectic solvent mixture, is studied using molecular dynamics simulations. The droplets are placed on a smooth model ionic substrate with positive and negative charges of the same magnitude q (0 e ≤ q ≤ 1.0 e), corresponding to a step-by-step change from a hydrophobic to hydrophilic surface. The molecular microstructure of the droplets and their spatial compositions are systematically studied in details on how they both change while gradually moving from hydrophobic to hydrophilic surface. It is observed that urea initially forms a monolayer on the surface with a planar orientation. This layer slowly shrinks while it becomes laterally more and more constrained. It becomes also molecularly more ordered when the surface becomes hydrophilic, at the same time as the contact angles become larger and larger. The anions (Cl-) are continuously pushed further away from the charged surface. While the contact angle increases and wetting decreases, and urea forms even a secondary stable layer where it changes its orientation and turns to have one of its amines facing up and carbonyl down. The average number of urea-urea H-bonds decreases linearly while the number of ion-pair contacts increases when the urea molecules are separating from the mixture. Our analysis gives a clear molecular understanding of the process and can be useful in many applications from membrane separation to catalysis.
KW - Adsorbed layer
KW - Deep eutectic solvents
KW - Molecular simulation
KW - Solid/fluid interface
KW - Wetting
UR - http://www.scopus.com/inward/record.url?scp=85091212214&partnerID=8YFLogxK
U2 - 10.1016/j.molliq.2020.114298
DO - 10.1016/j.molliq.2020.114298
M3 - 文章
AN - SCOPUS:85091212214
SN - 0167-7322
VL - 319
JO - Journal of Molecular Liquids
JF - Journal of Molecular Liquids
M1 - 114298
ER -