Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting

Jie Yu, Zheng Li, Tong Liu, Siyuan Zhao, Daqin Guan, Daifen Chen, Zongping Shao, Meng Ni

科研成果: 期刊稿件文献综述同行评审

74 引用 (Scopus)

摘要

As a crucial route for the development of clean and sustainable energy systems, electrochemical water splitting has received much attention. Designing high-performance electrocatalysts for this process is extremely desirable to lower its overpotential and make practical applications possible. Over the past years, owing to the exploitation of novel preparation strategies, advanced characterization approaches, and insightful theoretical calculations, the rational design of numerous CoxAy (A = P, S, Se)-based materials with excellent electrocatalytic water-splitting behavior has been demonstrated. In particular, the catalytic properties of these CoxAy (A = P, S, Se)-based materials highly depend on their structural/electronic modulation. This article summarizes recent efforts and progress in regulating their electronic and morphological structures toward the performance optimization. Phase control, defect engineering, nanostructure construction, heteroatom doping, and composite engineering, are introduced to optimize electronic configurations, increase active sites, and enhance the conductivity, etc. Moreover, the underlying activity-structure relationships behind the boosted catalytic behavior of these CoxAy (A = P, S, Se)-based materials are discussed in detail. Lastly, a perspective on the exploration of CoxAy (A = P, S, Se)-based electrocatalysts in the future is presented. This review provides insights into the investigation of emerging materials in energy chemistry.

源语言英语
文章编号141674
期刊Chemical Engineering Journal
460
DOI
出版状态已出版 - 15 3月 2023
已对外发布

指纹

探究 'Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting' 的科研主题。它们共同构成独一无二的指纹。

引用此