Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption

Shasha Feng, Xingya Li, Shuaifei Zhao, Yaoxin Hu, Zhaoxiang Zhong, Weihong Xing, Huanting Wang

科研成果: 期刊稿件文章同行评审

54 引用 (Scopus)

摘要

Ultrafine dust and acid polar gas species (SO2, NOx, H2S, etc.) in the atmosphere have severe effects on human health. They are the most important indices for air quality evaluation. In this work, we developed a multifunctional, metal organic framework (MOF: UiO-66-NH2) and carbon nanotube (CNT)-modified filter for efficient ultrafine dust removal and acid gas adsorption. A thin layer of amine-functionalized CNTs was used to construct network skeletons on a polytetrafluoroethylene (PTFE) substrate and acted as an intermediate between the porous MOF nanoparticles and the PTFE substrate. The pore size of the filter was successfully regulated from 5.1 to 2.1 μm while the modified filter still had a high gas permeability of up to 402 m3 m−2 h−1 kPa−1. This well-designed multifunctional filter showed an extremely high capture efficiency (99.997%) for ultrafine dust (diameter ∼0.3 μm) and SO2 adsorption capacity in dynamic filtration. Our filter with hierarchical structures is very promising for indoor air purification.

源语言英语
页(从-至)3023-3031
页数9
期刊Environmental Science: Nano
5
12
DOI
出版状态已出版 - 2018

指纹

探究 'Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption' 的科研主题。它们共同构成独一无二的指纹。

引用此