摘要
BaCe0.8Y0.2O3−δ (BCY) is the most widely studied proton-conducting material and is frequently fabricated as a dense membrane for hydrogen separation. However, the limitation of preparing dense BCY membranes is the extremely high sintering temperature (>1500°C). Herein, the BCY 7-channel hollow fiber membrane was prepared by a one-step thermal processing (OSTP) with Co2O3 as a sintering aid. The results showed that the addition of 1 wt.% Co2O3 at a reduced temperature of 1350°C was the optimum composition and sintering condition for densification and forming a single perovskite-phase structure. The hydrogen permeation flux of the BCY hollow fiber membrane reached up to 0.34 ml min−1 cm−2 at 900°C. The long-term stability test was conducted for 300 h. The successful attempt of such a strategy provides a green and straightforward path for the preparation of dense ceramic proton-conducting membranes on a large scale. This promotes its industrial application in high-temperature hydrogen separation.
源语言 | 英语 |
---|---|
文章编号 | e17607 |
期刊 | AIChE Journal |
卷 | 68 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 6月 2022 |