TY - JOUR
T1 - Optimization of Heat Transfer and Flow Performance of Microchannel Liquid-Cooled Plate Based on Orthogonal Test
AU - Yang, Zhengchao
AU - Yao, Qiufei
AU - Wang, Yu
AU - Gu, Junlong
AU - Yu, Zhichen
AU - Li, Qipeng
AU - Sun, Xiaoyi
AU - Yang, Xuejing
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/3
Y1 - 2025/3
N2 - Microchannel liquid-cooled plates are widely used in high-performance electronic devices, but their heat transfer performance and pressure drop characteristics face complex challenges in the design process. In this paper, a counter-flow rectangular microchannel liquid-cooled plate is designed, and the effects of velocity, aspect ratio, and inlet/outlet forms on its heat transfer and pressure drop performance are investigated through orthogonal tests and numerical simulations. The results indicate that the velocity plays a crucial role in determining the plate’s performance. While increasing the velocity substantially enhances heat transfer efficiency, it also causes a steep rise in pressure drop. The aspect ratio has a lesser effect on the performance than the velocity, and smaller aspect ratios help to achieve a balance between thermal and flow properties. The comprehensive optimization of the inlet and outlet forms and velocity has a significant effect on the temperature uniformity and pressure drop, and the design of the cooling fluid inlet and outlet form of CM (side inlet and middle outlet) can effectively improve the temperature distribution and reduce the pressure drop at high velocity. The design parameters with the best overall performance are the aspect ratio of 2, the velocity of 0.5 m/s, and the CM inlet/outlet form (K2V0.5CM). Comparison with other design parameter sets verified that this parameter set showed significant advantages in cooling effect, temperature uniformity, flow and heat transfer performance. Finally, the correlation equation on Nu is established, and the simulated Nu as well as the calculated Nu are compared. In this thesis, a counter-flow rectangular microchannel cold plate is designed to optimize the flow rate, channel structure and other parameters through orthogonal tests to reduce the temperature gradient and balance the heat transfer and flow resistance to meet the demand for efficient heat dissipation of 350 W CPU. This study provides an important reference for the structural optimization of microchannel liquid-cooled panels and the engineering application of high-efficiency heat dissipation systems.
AB - Microchannel liquid-cooled plates are widely used in high-performance electronic devices, but their heat transfer performance and pressure drop characteristics face complex challenges in the design process. In this paper, a counter-flow rectangular microchannel liquid-cooled plate is designed, and the effects of velocity, aspect ratio, and inlet/outlet forms on its heat transfer and pressure drop performance are investigated through orthogonal tests and numerical simulations. The results indicate that the velocity plays a crucial role in determining the plate’s performance. While increasing the velocity substantially enhances heat transfer efficiency, it also causes a steep rise in pressure drop. The aspect ratio has a lesser effect on the performance than the velocity, and smaller aspect ratios help to achieve a balance between thermal and flow properties. The comprehensive optimization of the inlet and outlet forms and velocity has a significant effect on the temperature uniformity and pressure drop, and the design of the cooling fluid inlet and outlet form of CM (side inlet and middle outlet) can effectively improve the temperature distribution and reduce the pressure drop at high velocity. The design parameters with the best overall performance are the aspect ratio of 2, the velocity of 0.5 m/s, and the CM inlet/outlet form (K2V0.5CM). Comparison with other design parameter sets verified that this parameter set showed significant advantages in cooling effect, temperature uniformity, flow and heat transfer performance. Finally, the correlation equation on Nu is established, and the simulated Nu as well as the calculated Nu are compared. In this thesis, a counter-flow rectangular microchannel cold plate is designed to optimize the flow rate, channel structure and other parameters through orthogonal tests to reduce the temperature gradient and balance the heat transfer and flow resistance to meet the demand for efficient heat dissipation of 350 W CPU. This study provides an important reference for the structural optimization of microchannel liquid-cooled panels and the engineering application of high-efficiency heat dissipation systems.
KW - aspect ratio
KW - flow velocity
KW - inlet and outlet forms
KW - microchannel liquid-cooled plate
KW - numerical simulation
KW - orthogonal test
UR - http://www.scopus.com/inward/record.url?scp=105001112649&partnerID=8YFLogxK
U2 - 10.3390/buildings15060905
DO - 10.3390/buildings15060905
M3 - 文章
AN - SCOPUS:105001112649
SN - 2075-5309
VL - 15
JO - Buildings
JF - Buildings
IS - 6
M1 - 905
ER -