摘要
Element doping has been extensively attempted to develop visible-light-driven photocatalysts, which introduces impurity levels and enhances light absorption. However, the dopants can also become recombination centers for photogenerated electrons and holes. To address the recombination challenge, we report a gradient phosphorus-doped CdS (CdS-P) homojunction nanostructure, creating an oriented built-in electric-field for efficient extraction of carriers from inside to surface of the photocatalyst. The apparent quantum efficiency (AQY) based on the cocatalyst-free photocatalyst is up to 8.2% at 420 nm while the H2 evolution rate boosts to 194.3 μmol·h-1·mg-1, which is 58.3 times higher than that of pristine CdS. This concept of oriented built-in electric field introduced by surface gradient diffusion doping should provide a new approach to design other types of semiconductor photocatalysts for efficient solar-to-chemical conversion.
源语言 | 英语 |
---|---|
页(从-至) | 3803-3808 |
页数 | 6 |
期刊 | Nano Letters |
卷 | 17 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 14 6月 2017 |