Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models

Ke Zhou, Rongjian Ding, Xiwang Tao, Yuwen Cui, Jiquan Yang, Hongli Mao, Zhongwei Gu

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

Despite 3D bioprinting having emerged as an advanced method for fabricating complex in vitro models, developing suitable bioinks that fulfill the opposing requirements for the biofabrication window still remains challenging. Although naturally derived hydrogels can better mimic the extracellular matrix (ECM) of numerous tissues, their weak mechanical properties usually result in architecturally simple shapes and patchy functions of in vitro models. Here, this limitation is addressed by a peptide-dendrimer-reinforced bioink (HC-PDN) which contained the peptide-dendrimer branched PEG with end-grafted norbornene (PDN) and the cysteamine-modified HA (HC). The extensive introduction of ethylene end-groups facilitates the grafting of sufficient moieties and enhances thiol-ene-induced crosslinking, making HC-PDN exhibits improved mechanical and rheological properties, as well as a significant reduction in reactive oxygen species (ROS) accumulation than that of methacrylated hyaluronic acid (HAMA). In addition, HC-PDN can be applied for the bioprinting of numerous complex structures with superior shape fidelity and soft matrix microenvironment. A heterogeneous and biomimetic hepatic tissue is concretely constructed in this work. The HepG2-C3As, LX-2s, and EA.hy.926s utilized with HC-PDN and assisted GelMA bioinks closely resemble the parenchymal and non-parenchymal counterparts of the native liver. The bioprinted models show the endothelium barrier function, hepatic functions, as well as increased activity of drug-metabolizing enzymes, which are essential functions of liver tissue in vivo. All these properties make HC-PDN a promising bioink to open numerous opportunities for in vitro model biofabrication. Statement of significance: In this manuscript, we introduced a peptide dendrimer system, which belongs to the family of hyperbranched 3D nanosized macromolecules that exhibit high molecular structure regularity and various biological advantages. Specifically, norbornene-modified peptide dendrimer was grafted onto PEG, and hyaluronic acid (HA) was selected as a base material for bioink formulation because it is a component of the ECM. Peptide dendrimers confer the following advantages to bioinks: (a) Geometric symmetry can facilitate construction of bioinks with homogeneous networks; (b) abundant surface functional groups allow for abundant crosslinking points; (c) the biological origin can promote biocompatibility. This study shows conceptualization to application of a peptide-dendrimer bioink to extend the Biofabrication Window of natural bioinks and will expand use of 3D bioprinting of in vitro models.

源语言英语
页(从-至)243-255
页数13
期刊Acta Biomaterialia
169
DOI
出版状态已出版 - 1 10月 2023

指纹

探究 'Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models' 的科研主题。它们共同构成独一无二的指纹。

引用此