TY - JOUR
T1 - Perovskite solar cells based on screen-printed thin films
AU - Chen, Changshun
AU - Chen, Jianxin
AU - Han, Huchen
AU - Chao, Lingfeng
AU - Hu, Jianfei
AU - Niu, Tingting
AU - Dong, He
AU - Yang, Songwang
AU - Xia, Yingdong
AU - Chen, Yonghua
AU - Huang, Wei
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2022/12/8
Y1 - 2022/12/8
N2 - One potential advantage of perovskite solar cells (PSCs) is the ability to solution process the precursors and deposit films from solution1,2. At present, spin coating, blade coating, spray coating, inkjet printing and slot-die printing have been investigated to deposit hybrid perovskite thin films3–6. Here we expand the range of deposition methods to include screen-printing, enabled by a stable and viscosity-adjustable (40–44,000 cP) perovskite ink made from a methylammonium acetate ionic liquid solvent. We demonstrate control over perovskite thin-film thickness (from about 120 nm to about 1,200 nm), area (from 0.5 × 0.5 cm2 to 5 × 5 cm2) and patterning on different substrates. Printing rates in excess of 20 cm s−1 and close to 100% ink use were achieved. Using this deposition method in ambient air and regardless of humidity, we obtained the best efficiencies of 20.52% (0.05 cm2) and 18.12% (1 cm2) compared with 20.13% and 12.52%, respectively, for the spin-coated thin films in normal devices with thermally evaporated metal electrodes. Most notably, fully screen-printing devices with a single machine in ambient air have been successfully explored. The corresponding photovoltaic cells exhibit high efficiencies of 14.98%, 13.53% and 11.80% on 0.05-cm2, 1.00-cm2 and 16.37-cm2 (small-module) areas, respectively, along with 96.75% of the initial efficiency retained over 300 h of operation at maximum power point.
AB - One potential advantage of perovskite solar cells (PSCs) is the ability to solution process the precursors and deposit films from solution1,2. At present, spin coating, blade coating, spray coating, inkjet printing and slot-die printing have been investigated to deposit hybrid perovskite thin films3–6. Here we expand the range of deposition methods to include screen-printing, enabled by a stable and viscosity-adjustable (40–44,000 cP) perovskite ink made from a methylammonium acetate ionic liquid solvent. We demonstrate control over perovskite thin-film thickness (from about 120 nm to about 1,200 nm), area (from 0.5 × 0.5 cm2 to 5 × 5 cm2) and patterning on different substrates. Printing rates in excess of 20 cm s−1 and close to 100% ink use were achieved. Using this deposition method in ambient air and regardless of humidity, we obtained the best efficiencies of 20.52% (0.05 cm2) and 18.12% (1 cm2) compared with 20.13% and 12.52%, respectively, for the spin-coated thin films in normal devices with thermally evaporated metal electrodes. Most notably, fully screen-printing devices with a single machine in ambient air have been successfully explored. The corresponding photovoltaic cells exhibit high efficiencies of 14.98%, 13.53% and 11.80% on 0.05-cm2, 1.00-cm2 and 16.37-cm2 (small-module) areas, respectively, along with 96.75% of the initial efficiency retained over 300 h of operation at maximum power point.
UR - http://www.scopus.com/inward/record.url?scp=85141608765&partnerID=8YFLogxK
U2 - 10.1038/s41586-022-05346-0
DO - 10.1038/s41586-022-05346-0
M3 - 文章
C2 - 36352221
AN - SCOPUS:85141608765
SN - 0028-0836
VL - 612
SP - 266
EP - 271
JO - Nature
JF - Nature
IS - 7939
ER -