Plasmonic three-dimensional transparent conductor based on Al-doped zinc oxide-coated nanostructured glass using atomic layer deposition

Gary A. Malek, Tolga Aytug, Qingfeng Liu, Judy Wu

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for designing plasmonic 3D transparent conductors. Transformation of the nonconducting 3D structure to a conducting porous surface network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electron-beam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO-coated glass surface along with the in-plane dimensions of the deposited AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to those of untextured two-dimensional AZO-coated glass substrates. In addition, transmittance measurements of the glass samples coated at various AZO thicknesses showed preservation of the transparent nature of each sample, and the AuNPs demonstrated enhanced light scattering as well as light-trapping capabilities.

源语言英语
页(从-至)8556-8561
页数6
期刊ACS Applied Materials and Interfaces
7
16
DOI
出版状态已出版 - 29 4月 2015
已对外发布

指纹

探究 'Plasmonic three-dimensional transparent conductor based on Al-doped zinc oxide-coated nanostructured glass using atomic layer deposition' 的科研主题。它们共同构成独一无二的指纹。

引用此