摘要
To study the surface residual stresses generated by machining Ti6Al4V alloy, we conducted some finite element simulations of the orthogonal cutting process using different cutting parameters. The simulation was based on the Arbitrary Lagrangian–Eulerian finite element approach. It shows that the tool geometry and the cutting parameters can affect the machining-induced surface residual stresses significantly in orthogonal cutting. To study the influences of the tool corner radius and tool feed per revolution on the surface residual stresses induced by a three-dimensional cutting process (which are always neglected in orthogonal cutting models), a plane strain condition-based indentation model was used to evaluate the corresponding effects. Based on the combination of the orthogonal cutting model and the orthogonal indentation model, the surface residual stresses generated in the three-dimensional cutting process could be modeled with much higher efficiency than with three-dimensional modeling. We conducted some corresponding experiments to validate the predicted results obtained from the model proposed in this paper and found that the results obtained from the two different methods were in satisfactory quantitative agreement.
源语言 | 英语 |
---|---|
文章编号 | 471 |
期刊 | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
卷 | 41 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 1 11月 2019 |