Protective effect of Dioscorea zingiberensis ethanol extract on the disruption of blood–testes barrier in high-fat diet/streptozotocin-induced diabetic mice by upregulating ZO-1 and Nrf2

Jie Zhou, Youli Xi, Jie Zhang, Jun Tang, Xiaowei Zhou, Jiayi Chen, Chao Nie, Zhengbiao Zhu, Bo Ma

科研成果: 期刊稿件文章同行评审

22 引用 (Scopus)

摘要

Testicular injury is the primary pathogenesis of diabetes-induced male infertility. Dioscorea zingiberensis (DZ), a traditional Chinese medicine (TCM) including saponins, flavonoids and cellulose, is used to treat diseases in the reproductive system. But the protective effects of DZ on diabetes-induced testicular injury remain poorly understood. In this study, the therapeutic effects of chronic oral DZ treatment on testis impairment in a diabetic mouse model were explored by assessing sperm morphology, blood–testes barrier (BTB) integrity and testicular histological examination. Our results showed that DZ significantly reversed BTB disruption, testicular tissue injury and abnormal sperm morphology in diabetic mice. Interestingly, diabetes-induced disruption of the BTB was associated with a decrease in the tight junction (TJ) protein zonula occludens-1 (ZO-1). Dioscorea zingiberensis effectively increased ZO-1 expression in testis tissue to restore the integrity of the BTB. Moreover, DZ treatment significantly reduced hyperglycaemia-induced increases in malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels. Further mechanistic studies revealed that DZ substantially enhanced the expression of Nrf2, NOQ1 and HO-1, which indicated that DZ exerts potential antioxidant effects against testicular tissue damage via the activation of Nrf2. In conclusion, the protective effects of DZ rely on repairing the integrity of the BTB and on reducing oxidative stress damage by mediating ZO-1 and Nrf2. The study contributes to discovering the DZ possible mechanism of action.

源语言英语
文章编号e13508
期刊Andrologia
52
3
DOI
出版状态已出版 - 1 4月 2020

指纹

探究 'Protective effect of Dioscorea zingiberensis ethanol extract on the disruption of blood–testes barrier in high-fat diet/streptozotocin-induced diabetic mice by upregulating ZO-1 and Nrf2' 的科研主题。它们共同构成独一无二的指纹。

引用此