Proton-Trapping Agent for Mitigating Hydrogen Evolution Corrosion of Zn for an Electrolytic MnO2/Zn Battery

Jifei Sun, Zaichun Liu, Ke Li, Yuan Yuan, Xinhua Zheng, Yan Xu, Mingming Wang, Mingyan Chuai, Hanlin Hu, Wei Chen

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

A rechargeable aqueous electrolytic MnO2/Zn battery (EMZB) based on a reversible Mn2+/MnO2 two-electron redox reaction in an acidic electrolyte is very attractive for large-scale energy storage due to its high output voltage, large gravimetric capacity, and low cost. However, severe hydrogen evolution corrosion (HEC) of the Zn anode in an acidic electrolyte limits its application. Here, a proton-trapping agent (PTA) is introduced in the electrolyte to improve the electrochemical performance of the EMZB. Experimental results and theoretical calculations demonstrate that HEC of the Zn electrode can be effectively mitigated through high binding energy between the protons and PTA. The optimized EMZB regulated by a PTA of acetate (EMZB-20% Ac) delivers a high discharge voltage of 1.91 V and over 400 stable cycles at 1 C, which is more than 5 times the cycle life of the battery without PTA. EMZB-20% Ac also shows a Coulombic efficiency of 90.7% at a high areal capacity of 8 mAh cm-2 and an energy retention of 83.6% after 1000 cycles at 5 C with an areal capacity of 1 mAh cm-2. This work provides a promising electrolyte regulation strategy for the design and application of a high-performance EMZB and other energy storage systems.

源语言英语
页(从-至)51900-51909
页数10
期刊ACS Applied Materials and Interfaces
14
46
DOI
出版状态已出版 - 23 11月 2022
已对外发布

指纹

探究 'Proton-Trapping Agent for Mitigating Hydrogen Evolution Corrosion of Zn for an Electrolytic MnO2/Zn Battery' 的科研主题。它们共同构成独一无二的指纹。

引用此