Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells

Wei Hui, Yingguo Yang, Quan Xu, Hao Gu, Shanglei Feng, Zhenhuang Su, Miaoran Zhang, Jiaou Wang, Xiaodong Li, Junfeng Fang, Fei Xia, Yingdong Xia, Yonghua Chen, Xingyu Gao, Wei Huang

科研成果: 期刊稿件文章同行评审

271 引用 (Scopus)

摘要

An efficient electron transport layer (ETL) plays a key role in promoting carrier separation and electron extraction in planar perovskite solar cells (PSCs). An effective composite ETL is fabricated using carboxylic-acid- and hydroxyl-rich red-carbon quantum dots (RCQs) to dope low-temperature solution-processed SnO2, which dramatically increases its electron mobility by ≈20 times from 9.32 × 10−4 to 1.73 × 10−2 cm2 V−1 s−1. The mobility achieved is one of the highest reported electron mobilities for modified SnO2. Fabricated planar PSCs based on this novel SnO2 ETL demonstrate an outstanding improvement in efficiency from 19.15% for PSCs without RCQs up to 22.77% and have enhanced long-term stability against humidity, preserving over 95% of the initial efficiency after 1000 h under 40–60% humidity at 25 °C. These significant achievements are solely attributed to the excellent electron mobility of the novel ETL, which is also proven to help the passivation of traps/defects at the ETL/perovskite interface and to promote the formation of highly crystallized perovskite, with an enhanced phase purity and uniformity over a large area. These results demonstrate that inexpensive RCQs are simple but excellent additives for producing efficient ETLs in stable high-performance PSCs as well as other perovskite-based optoelectronics.

源语言英语
文章编号1906374
期刊Advanced Materials
32
4
DOI
出版状态已出版 - 1 1月 2020

指纹

探究 'Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells' 的科研主题。它们共同构成独一无二的指纹。

引用此