摘要
In the present work, the sample of Si nanoparticles embedded in porous C (denoted as Si@porous-C) has been successfully synthesized by using nano-MgO as the pore-former. Observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) on Si@porous-C sample reveal that Si nanoparticles homogeneously disperse in porous carbon scaffold. As anode of lithium ion battery (LIB), Si@porous-C preserves a charge-discharge capacity of 1172 mAh g−1 after 40 cycles, possessing enhanced cyclic deterioration of only 0.35% per cycle in comparison with Si nanoparticles and Si nanoparticles embedded in ordinary carbon (denoted as Si@C). It delivers reversible capacities of about 947 mAh g−1, 670 mAh g−1, and 394 mAh g−1 in current densities of 1000 mA g−1, 2000 mA g−1, and 4000 mA g−1, respectively, all of which are higher than those of commercial nano-silicon and Si@C. The improved high-rate capability of Si@porous-C could be attributed to a decreased resistance and enhanced infiltration of electrolytic solution around nano-silicon particles. The merits of scalable synthetic process and improved electrochemical properties recommend Si@porous-C as a promising anode material for high performance Li-ion batteries.
源语言 | 英语 |
---|---|
页(从-至) | 166-172 |
页数 | 7 |
期刊 | Electrochimica Acta |
卷 | 249 |
DOI | |
出版状态 | 已出版 - 20 9月 2017 |